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Abstract. This paper proposes an automated method to check the cor-
rectness of range analysis used in the Linux kernel’s eBPF verifier. We
provide the specification of soundness for range analysis performed by
the eBPF verifier. We automatically generate verification conditions that
encode the operation of the eBPF verifier directly from the Linux kernel’s
C source code and check it against our specification. When we discover
instances where the eBPF verifier is unsound, we propose a method to
generate an eBPF program that demonstrates the mismatch between the
abstract and the concrete semantics. Our prototype automatically checks
the soundness of 16 versions of the eBPF verifier in the Linux kernel ver-
sions ranging from 4.14 to 5.19. In this process, we have discovered new
bugs in older versions and proved the soundness of range analysis in the
latest version of the Linux kernel.

Keywords: Abstract interpretation · Program verification · Program
synthesis · Kernel extensions · eBPF

1 Introduction

Extended Berkeley Packet Filter (eBPF) enables the Linux kernel to be extended
with user-developed functionality. Historically, eBPF has its roots in a domain-
specific language for efficient packet filtering [53], wherein a user can write a
description of packets that must be captured by the network stack. In its modern
form, eBPF is an in-kernel register-based virtual machine with a custom 64-bit
RISC instruction set. eBPF programs can be Just-in-Time (JIT) compiled to
the native processor hardware with access to a subset of kernel functions and
memory. Programs written in eBPF are widely used in the industry, e.g. for load
balancing [10], DDoS mitigation [38], and access control [12].

eBPF verifier. A user should be able to attach expressive programs within
the operating system, while ensuring that they are safe to run. For this pur-
pose, Linux has a built-in eBPF verifier [11] which performs a static analysis
of the eBPF program to check safety properties before allowing the program
⋆ Equal contribution.
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Fig. 1: Agni’s methodology for automatically checking the correctness of the eBPF ver-
ifier on each commit. When we find the kernel to be unsound, we generate an eBPF
program (i.e., a POC) highlighting the mismatch between abstract and concrete seman-
tics. When we are not able to generate a POC, kernel requires a manual verification.

to be loaded. Given that the verifier is executed in a production kernel, any
bug in the verifier creates a huge attack surface for exploits [50, 51, 62, 66] and
vulnerabilities [1–9,23–26,35,43–45].

Abstract interpretation in the kernel. The verifier, among other things,
tracks the values of its variables which it subsequently uses to deem memory
accesses to the kernel data structures to be safe. The eBPF static analyzer em-
ploys abstract interpretation [33] with multiple abstract domains to track the
types, liveness, and values of program variables across all executions. It uses five
abstract domains to track the values of variables (i.e., value tracking); four of
them are variants of interval domains and the other is a bitwise domain named
tnum [55, 57, 65, 71]. The kernel implements abstract operators for each of these
domains efficiently. Unlike traditional sound composition of sound operators typ-
ically done with abstract interpretation (i.e., modular reduced products) [31],
the abstract operators are composed in a non-modular fashion. Specifically, the
kernel mixes up the implementation of abstract operators in one domain with re-
duction operators that combine information across domains (§3, see Figure 2(d)).
Further, the Linux kernel does not provide any soundness guarantees for these
operators. This makes the task of verification challenging because each abstract
domain’s correctness individually does not necessarily imply the correctness of
their composition. To the best of our knowledge, there are no existing sound
reduction operators for the abstract domains in the kernel.

This paper. We propose an automated verification approach to check the
soundness of the eBPF verifier for value tracking. To perform soundness checks
on every kernel commit, we automatically generate a formula representing the
actions of the abstract operator from the verifier’s C code rather than manually
writing them (§5). Figure 1 illustrates our workflow. We develop a general cor-
rectness specification to determine when a non-modular abstract operator that
combines multiple domains is sound (§4.1). When we checked the validity of the
formula generated from recent versions of the verifier with the correctness spec-
ification, we found that the verifier is unsound. We discovered that the verifier
avoids manifesting these soundness bugs through a shared reduction operator
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that preconditions the input abstract values (§4.2). Refining our correctness
specification revealed that recent versions of the verifier are indeed sound.

When our refined soundness check fails, we generate a concrete eBPF pro-
gram that demonstrates the mismatch between abstract values maintained by the
verifier and the concrete execution of the eBPF program using program synthesis
methods (§4.3). We call our approach differential synthesis because it generates
programs that exercise the divergence between abstract verifier semantics and
concrete eBPF semantics in unsound kernels.

Prototype and results. We have used our prototype, Agni [18, 72]., to
automatically check the soundness of 16 kernel versions starting from 4.14 to
5.19. In this process, we have discovered 27 previously unknown bugs, which
have been subsequently fixed by unrelated patches. For each unsound verifier,
we have generated an eBPF program with at most three instructions that shows
the mismatch between the semantics in ≈ 97% of the cases. The eBPF programs
highlighting the mismatch are smaller than previously known ones. We have also
shown that the newer versions of the kernel verifier are sound with respect to
value tracking. The source code for our prototype is publicly available [18,72].

2 Background on Abstract Interpretation

Abstract interpretation is a form of static analysis that uses abstract values from
an abstract domain to represent sets of values of program variables. For example,
in the interval domain, the abstract value [x, y], with x, y ∈ Z, x ≤ y, tracks the
set of concrete values {z ∈ Z | x ≤ z ≤ y}. Abstract operators concisely represent
the impact of the program’s operations over its variables in the abstract domain.

Abstract domains, concretization, and abstraction. Formally, concrete
values form a partially ordered set (poset) with elements C and ordering relation
⊑C. The concrete poset is C ≜ 2Z (i.e., power set of integers) with the ordering
relationship ⊑C being the subset relationship ⊆. An abstract domain is also
a poset, with a set of elements A and ordering relation ⊑A. A concretization
function γ:A→C, takes an abstract value a∈A and produces concrete values
c∈C. For example, the interval domain uses the abstract poset A ≜ Z×Z with
the ordering relation [x, y] ⊑A [a, b]⇔ (a ≤ x) ∧ (b ≥ y).

An abstraction function α:C→A, takes a concrete value c ∈ C and produces
an abstract value a ∈ A. For example, in the interval domain, abstracting the
concrete value {1, 4, 6} produces α({1, 4, 6}) = [1, 6]. Concretizing [1, 6] yields
γ([1, 6]) = {1, 2, 3, 4, 5, 6}. As seen in this example, the abstraction of a concrete
value may over-approximate it to maintain concise representation in the abstract
domain. A value a ∈ A is a sound abstraction of c ∈ C if c ⊑C γ(a). For a sound
abstraction a of c, the smaller the concrete value γ(a), the higher the precision
of the abstraction.

Abstract operators. Intuitively, abstract operators capture the computa-
tion of concrete operators over program variables in the abstract domain. For ex-
ample, in the range domain, the action of concrete unary negation −C(·) may be
abstracted by −A([x, y]) ≜ [−y,−x]. Consider a concrete operation f :Zn→Zn
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on a single program variable that is an n-bit value. We can lift f point-wise to
any set c ∈ C, where f(c) ≜ {f(z) | z ∈ c}. An abstract operator g:A→A is a
sound abstraction of f if ∀a ∈ A : f(γ(a)) ⊑C γ(g(a)).

Galois connection. Abstraction and concretization functions (α, γ) are said
to form a Galois connection if: (1) α is monotonic (i.e. x ⊑C y =⇒ α(x) ⊑A
α(y)), (2) γ is monotonic (a ⊑A b =⇒ γ(a) ⊑C γ(b)), (3) γ ◦α is extensive (i.e.
∀c ∈ C : c ⊑C γ(α(c))), and (4) α◦γ is reductive (i.e. ∀a ∈ A : α(γ(a)) ⊑A a) [56].

The Galois connection is denoted as (C,⊑C)−−→
α

γ←−− (A,⊑A). The existence of
a Galois connection enables reasoning about the soundness and the precision of
any abstract operator. It is in principle possible to compute a sound and precise
abstraction of any concrete operator f through the composition α◦f◦γ. However,
it is computationally expensive, due to the evaluation of the concretization γ.

Combining multiple abstract domains through Cartesian Prod-
uct [31]. Suppose we are given two abstract domains (sets A1,A2) with sound
abstraction functions αA1, αA2 and concretization functions γA1, γA2. The Carte-
sian product abstract domain uses the set P ≜ A1 × A2, and the ordering re-
lationship applied separately to each domain: (a1 ⊑A1 b1) ∧ (a2 ⊑A2 b2) ⇒
(a1, a2) ⊑P (b1, b2). The concretization function intersects the results obtained
from concretizing each element in its respective abstract domain: γP(a1, a2) ≜
γA1(a1) ∩ γA2(a2). For a concrete value c ∈ C, the abstraction functions are
applied domain-wise and combined: αP(c) ≜

(
αA1(c), αA2(c)

)
. The Cartesian

product domain enjoys a Galois connection (C,⊑C)−−→
αP

γP←−− (P,⊑P) building on the
Galois connections of its component abstract domains.

For example, consider the interval domain (A1,⊑A1 defined as above) and
the parity domain (A2 ≜ {⊥, odd, even,⊤} with ordering relationships ⊥ ⊑A2
odd, even ⊑A2 ⊤). Suppose at some point the two interpretations produce ab-
stract values [3, 5] and even in the two domains. The concretization of the Carte-
sian product abstract value ([3, 5], even) produces the set {4}, which is smaller
than the concretizations of either abstract value [3, 5] or even in their respec-
tive domains. However, since the abstraction functions are applied domain-wise,
such information cannot be propagated to the abstract values themselves. For
example, it is desirable to propagate information from the abstract value even
in A2 to reduce the interval to [4, 4] in A1.

Reduced Products. Intuitively, we wish to make an abstract value in one
domain more precise using information available in an abstract value in a differ-
ent domain. Suppose we are given an abstract value (a1, a2) from the Cartesian
product domain. A reduction operator [34] attempts to find the smallest ab-
stract value (a′1, a

′
2) such that its concretization is the same as that of (a1, a2),

i.e. γA1(a1)∩γA2(a2). Formally, the reduction operator ρ:P→P is defined as the
greatest lower bound of all abstract values whose concretization is larger than
that of the given abstract value,

i.e. ρ(a1, a2) ≜
d

P {(a′1, a′2) | γP(a1, a2) ⊑C γP(a
′
1, a

′
2)}.

However, this definition is impractical to compute even on finite domains.
In general, more “relaxed” versions of reduction operators may be designed

to improve precision with efficient computation. For example, Granger [40] in-
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troduces a set of reduction operators ρ1, ρ2 to reduce each abstract domain
in turn, using information from the other, until a fixed point. The operator
ρ1:A1×A2→A1 reduces the abstract value in domain A1, while ρ2:A1×A2→A2

reduces that in A2. The reduction using ρ1 is sound if ∀a1 ∈ A1, a2 ∈ A2 :
γP(ρ1(a1, a2), a2) = γP(a1, a2) (preserve concrete values in the intersection) and
ρ1(a1, a2) ⊑A1 a1 (improve precision). Similarly, reduction using ρ2 is sound if
∀a1 ∈ A1, a2 ∈ A2 : γP(a1, ρ2(a1, a2)) = γP(a1, a2) and ρ2(a1, a2) ⊑A2 a2.

3 Abstract Interpretation in the Linux Kernel

The Linux kernel implements abstract interpretation to check the safety of eBPF
programs loaded into the kernel. The kernel’s algorithms are encoded into a
component called the eBPF verifier, which is a part of the pre-compiled oper-
ating system image. The Linux kernel uses several abstract domains to track
the type, liveness, and values of registers and memory locations used by eBPF
programs. Among these, the abstract domains used by the kernel to track values
are critical since they are used to guard statically against malicious programs
that may access kernel memory. In Linux kernel v5.19 (latest as of this writ-
ing), these analyses constitute roughly 2100 lines of source code in the eBPF
verifier. Implementing such analyses soundly in the kernel is challenging. This
part of the verifier has been a source of several high-profile security vulnerabili-
ties [1–9,23–26,35,43–45] and exploits [50,51,62,66].

The Linux kernel uses five abstract domains for value tracking, including
intervals in unsigned 64-bit (u64), unsigned 32-bit (u32), signed 64-bit (s64),
signed 32-bit (s32), and tri-state numbers (tnum [61, 71]). The kernel does not
provide a formal specification of their abstraction or concretization functions, or
proofs of soundness of the abstract operators. Below, we illustrate the abstract
domains used in the Linux kernel with the unsigned 64-bit interval domain u64

and tristate numbers tnum.

The u64 domain. The u64 abstract domain tracks an upper and lower bound
of a 64-bit register interpreted as an unsigned 64-bit value. The eBPF verifier
maintains the abstract u64 value as part of its static state for each register.
Figure 2(a) provides a simplified C source code for abstract addition in the
u64 domain. The operator takes two abstract values in1 and in2, with the two
components of each abstract value denoted by the members u64_min and u64_max.
The output abstract value is stored in out. Here, U64_MAX is the largest 64-bit non-
negative integer. The first if condition detects if integer overflows may occur as
a result of addition. If there is overflow, the analysis loses all precision, setting
the 64-bit bounds of the result to the largest abstract value, [0, U64_MAX]. If there
is no overflow (else clause), out is set to the component-wise sum of the bounds
of in1 and in2, similar to unbounded bit-width interval arithmetic [32].

Formally, the abstract domain is Au64 ≜ {[x, y] | (x, y ∈ Z+
64) ∧ (x ≤u64

y)}, where Z+
64 is the set of 64-bit non-negative integers, and ≤u64 represents

a 64-bit unsigned comparison. The ordering relationship is (x1 ≥u64 x2) ∧
(y1 ≤u64 y2)⇔ [x1, y1] ⊑u64 [x2, y2]. The concretization function is γu64([x, y]) ≜
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1. out.u64_min = out.tnum.v;
2. out.u64_max = min(in1.u64_max, 
3.                   in2.u64_max);

(d) (c) 
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3.   (in1.u64_max + in2.u64_max < 
4.   in2.u64_max)) {
5.     out.u64_min = 0;
6.     out.u64_max = U64_MAX;
7. } else {
8.     out.u64_min = in1.u64_min + 
9.                   in2.u64_min;
10.     out.u64_max = in1.u64_max + 
11.                   in2.u64_max;
12. }
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Fig. 2: Excerpts (simplified) from the kernel’s implementation of the abstract opera-
tors for (a) addition (from the function scalar_min_max_add [14]), and (b) bitwise AND
(from scalar_min_max_and [15]). (c) Example of reduced product abstract interpreta-
tion where one may use inductive assertions on abstract operators from each domain,
along with the soundness of reduction operators, to reason about the correctness of
the overall abstraction. The greyed boxes show modular reasoning about components
within the boxes. (d) In the Linux kernel, it is challenging to reason modularly about
the correctness of abstract operators in each domain independently from their pairwise
reductions, since the implementation combines abstraction with reduction. Proving
soundness requires one-shot reasoning about all operations together.

{z | (z ∈ Z+
64) ∧ (x ≤u64 z ≤u64 y)}. The abstraction function is αu64(c) ≜

[minu64(c),maxu64(c)], where c is a member of the powerset of Z+
64, and minu64(·)

and maxu64(·) compute the minimum and maximum over a finite set c where
each element of c is interpreted as a 64-bit unsigned value.

Tristate numbers (tnums). This abstract domain in the Linux kernel tracks
which bits of a variable are known to be 0, known to be 1, or unknown across
executions of the program. This domain is similar to bitwise domains [55,57,65].
However, the kernel implements this abstract domain efficiently with a tuple of
two unsigned integers (v,m). If m for a particular bit is 1, then the value of that
bit is unknown. If m for a particular bit is 0, then value of that bit is equal to
v’s value for the particular bit. More formally, the abstraction function (αt) is
written using two other functions defined as follows: α&(C) ≜ &

{
c | c ∈ C

}
; and

α|(C) ≜ |
{
c | c ∈ C

}
. Then, αt(C) ≜

(
α&(C), α&(C)^α|(C)

)
. The concretization

function is written as: γt(P ) = γt((P.v, P.m)) ≜
{
c ∈ Z+

64 | c & ~P.m = P.v
}

[71].
Abstract operators in the Linux kernel and challenges in proving

their correctness. The Linux kernel implements an abstract operator in each
abstract domain for each arithmetic and logic (ALU) instruction and each jump
instruction in the eBPF instruction set.1 The kernel verifier also provides func-
tions to propagate information between the abstractions (reductions). However,

1 The ALU instructions include 32 and 64-bit add, sub, mul, div, or, and, lsh,
rsh, neg, mod, xor, arsh and the jump instructions include 32 and 64-bit ja, jeq,
jgt, jge, jlt, jle, jset, jne, jsgt, jsge, jslt, jsle [13].



eBPF Range Analysis Verification 7

it does not provide formal underpinnings, e.g. Galois connections. The overall
analysis appears to be a Reduced Product abstract interpretation (§2).

However, the key challenge in proving soundness is that the kernel’s operators
combine abstraction with reduction. Consider the excerpt in Figure 2(b) from
the implementation of the bitwise AND operation in the u64 abstract domain in
the kernel, simplified for clarity. As before, in1 and in2 correspond to the input
abstract values, and out to the output abstract value. The members with names
tnum.* denote the components of the abstract tnum. Before the execution of these
two lines, the tnum abstract output out.tnum.v has already been computed. In
the first line, the lower bound of the u64 result, out.u64_min is updated using the
output abstract value in a different domain (out.tnum.v). Hence, the operation
overall is not (merely) an abstract operator in the u64 domain. In the second
line, the output abstract state out.u64_max is updated using the abstract inputs
in the u64 domain. Reduction operators consume abstract outputs, not inputs.
Hence, the operation overall is not a reduction operator either.

These characteristics apply not just to the kernel’s bitwise AND operation
in the u64 domain. Figure 2(d) shows the structure of several of the kernel’s ab-
stract operators, compared against the typical structure of product domains and
reduction operators (Figure 2(c)). The kernel’s algorithms combine abstraction
with reduction, making it challenging to prove their soundness in a modular
fashion. Instead, we must resort to a “one-shot” approach, which attempts to
prove the soundness of the abstraction of an operator in one domain and the
reductions across domains together. We call the kernel’s abstract operators ab-
straction/reduction operators in the rest of this paper.

4 Automatic Verification of the Kernel’s Algorithms

Given the non-modular structure of the kernel’s abstract algorithms (§3), we
cannot use traditional methods to prove their soundness, i.e. by showing the
soundness of each domain and the reductions separately. Further, the kernel’s
algorithms have been evolving continuously with the inclusion of new features
to the eBPF run-time environment. We want our methods to be applicable to
every new update and commit to the Linux kernel.

Hence, our goal is to perform automatic verification using SMT solvers to
prove the soundness of (or find bugs in) the C implementation of Linux’s ab-
straction/reduction operators. We work with the input-output semantics of the
kernel’s abstraction/reduction operators in first-order logic extracted automati-
cally from the kernel’s C source code (details of the extraction deferred to §5).

Overview of our approach. We develop generic soundness specifications for
the Linux kernel’s abstraction/reduction operators, handling arithmetic, logic,
and branching instructions (§4.1). We find that several kernel operators violate
these soundness specifications. However, many of these violations flag latent
bugs in the kernel’s algorithms—bugs which are not necessarily manifested in
concrete program executions. We observe that the kernel includes a shared “tail”
of computation in all of its abstraction/reduction operators. We use this shared
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computation to refine our soundness specification by preconditioning the input
abstract states (§4.2). This refinement enables proving the soundness of several
of the kernel’s operators. However, it still identifies many potential violations
of soundness in the kernel. We present a method based on program synthesis
to generate loop-free eBPF programs that manifest the bugs identified by the
soundness specifications, automatically producing programs that have divergent
concrete and abstract semantics. We call this method differential synthesis (§4.3).

Figure 1 illustrates our entire workflow. Starting from the Linux kernel source
code, our techniques produce concrete eBPF programs that manifest soundness
bugs in the kernel’s algorithms. We have used this procedure to prove the sound-
ness of multiple Linux kernel versions, discovered previously unknown soundness
bugs (i.e. no CVEs assigned, to our knowledge), with validated proof-of-concept
programs triggering those bugs.

4.1 Soundness Specification for Abstraction/Reduction Operators

We present verification conditions that are sufficient to assert the soundness of
abstraction/reduction operators in the Linux kernel.

Preliminaries. Encoding soundness for a single abstract domain
in SMT. We describe how to encode the soundness condition for an abstract
operator of two operands as an SMT formula, since most eBPF instructions take
two operands. Suppose f :C× C→C is a binary concrete operation (e.g. 64-bit
addition) over the concrete domain (e.g. C ≜ 2Z

+
64). Suppose the operator g:A×

A→A abstracts f . Operator g is sound (§2) if ∀a1, a2 ∈ A : f(γ(a1), γ(a2)) ⊑C
γ(g(a1, a2)).

We can check soundness with an SMT query as follows. Suppose we have
SMT variables to denote a bitvector x ∈ C and an abstract value a ∈ A. We can
use the concretization function γ to represent the fact that x is included in the
concretization of a. For example, for the u64 domain, we may use the formula
memu64(x, a) ≜ (a.min ≤u64 x) ∧ (x ≤u64 a.max) to assert that x ∈ γ(a).

The input-output relationship of abstract operator g is available as a first-
order logic formula extracted from the kernel source code (§5). We represent the
resulting formula as ao = absg(a

i
1, a

i
2), where ai1 and ai2 are input abstract values

and ao is the output abstract value.
The concrete semantics of the eBPF instruction set determines the input-

output relationship of the concrete operation f . For example, the bpf_add64 in-
struction performs binary addition (with possibility of overflow) of two 64-bit
registers, denoted by +64. The action of this instruction is encoded through the
formula xo = concf (x

i
1, x

i
2); for bpf_add64, concf (xi

1, x
i
2) ≜ (xi

1 +64 x
i
2).

The concrete ordering relationship ⊑C is just the subset operation ⊆ between
two sets. For two sets S1, S2, we can encode the relationship S1 ⊆ S2 by asserting
that ∀x : x ∈ S1 ⇒ x ∈ S2. Putting all this together, we can check the soundness
of a single abstract operator absg, by using an SMT solver to check the validity
of the formula (i.e., by checking if the negation is unsatisfiable).

∀xi
1, xi

2 ∈ C, ai1, a
i
2 ∈ A : memA(x

i
1, a

i
1) ∧memA(x

i
2, a

i
2) ∧

xo = concf (x
i
1, x

i
2) ∧ ao = absg(a

i
1, a

i
2)⇒ memA(x

o, ao) (1)
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Generalizing soundness to abstraction/reduction operators span-
ning multiple abstract domains. For the abstraction/reduction operators in
Linux (§3), we can no longer assert soundness for an abstract domain purely us-
ing abstract values from that domain. We show how to extend the reasoning to
two abstract domains. Let us denote the two abstract domains by A1 and A2. An
eBPF instruction has two inputs (xi

1, xi
2) and each input has the corresponding

abstract value for each abstract domain. Suppose ai11 and ai12 correspond to ab-
stract values for the first input from domains A1 and A2, respectively (similarly,
ai21 and ai22 for the second input). Further, the concrete input xi must be in the
intersection of the concretizations of all its abstract values. Hence, the formula
memA1

(xi
1, a

i
11)∧memA2

(xi
1, a

i
12)∧memA1

(xi
2, a

i
21)∧memA2

(xi
2, a

i
22) must hold.

We denote the kernel’s abstraction/reduction operation, extracted from C
source code, as {ao1, ao2} = absg(a

i
11, a

i
12, a

i
21, a

i
22). Note that the kernel’s oper-

ation outputs a list of abstract values corresponding to each abstract domain
(unlike Equation 1). The concrete semantics dictates that xo = concf (x

i
1, x

i
2).

To establish the soundness of the abstraction/reduction operator, we ensure
that the concrete output is included in the concretizations of the abstract outputs
in each domain, i.e., memA1

(xo, ao1)∧memA2
(xo, ao2). Putting it all together, we

check the validity of the following SMT formula:

∀xi
1, xi

2 ∈ C, ai11, ai21 ∈ A1, ai12, ai22 ∈ A2 :

memA1(x
i
1, a

i
11) ∧memA2

(xi
1, a

i
12) ∧memA1

(xi
2, a

i
21) ∧memA2

(xi
2, a

i
22)∧

xo = concf (x
i
1, x

i
2) ∧ {ao1, ao2} = absg(a

i
11, a

i
12, a

i
21, a

i
22)

⇒ (memA1
(xo, ao1) ∧memA2

(xo, ao2)) (2)

The kernel uses five abstract domains (§3). Extending from two domains to all
five domains is straightforward. It involves the addition of membership queries
for the inputs and the corresponding abstract values (i.e., mem predicate above).
The encoding of each of the kernel’s abstraction/reduction operators returns a
list containing five abstract outputs (one for each domain). Finally, we check that
the concrete output is included in the concretization of each abstract output.

Encoding arithmetic and logic (ALU) instructions. Using the formu-
lation above, we have encoded soundness specifications of abstraction/reduction
operators for 16 eBPF ALU instructions, which include 32 and 64-bit add, sub,

div, or, and, lsh, rsh, neg, mod, xor, arsh. Notably, we exclude the multipli-
cation instruction mul, whose SMT formula involves a bitvector multiplication
operation and a large unrolled loop, making it intractable in the bitvector theory.

Encoding branch instructions. We also encoded soundness specifications
for conditional and unconditional branches (jeq, jlt, etc.) on both 64 and 32-bit
register operands. These amount to 20 instructions, for a total of 36 instructions
captured by our encodings. While the soundness of abstracting ALU instructions
follows the general structure of Equation 2, writing down the soundness condi-
tions for branches is more involved. Branches do not concretely modify their
input registers. However, the kernel learns new information in the abstract do-
mains using the branch outcome (true vs. false). For example, in the u64 domain,
consider two abstract registers [1, 5], [3, 3]. Jumping upon an = (equals) compar-



10 H. Vishwanathan et al.

ison shows that the first register can also be set to [3, 3] in the true case. Indeed,
each conditional jump instruction produces four abstract outputs (rather than
the usual one output for ALU instructions), corresponding to updated abstract
values for two registers across two branch outcomes.

We illustrate the encoding of the correctness condition for the jump instruc-
tion for a single abstract domain. Given two concrete operands xi

1 and xi
2, the

concrete interpretation for the jump instruction returns whether the condition
is true or false. When xo = concf (x

i
1, x

i
2), xo will be either true or false. The

kernel’s abstraction/reduction operator generates four output abstract values,
ao1t, a

o
1f , a

o
2t, a

o
2f . There are two abstract outputs corresponding to each input.

They reflect the updated abstract value for the true case (e.g., ao1t is the up-
dated abstract value of the first input when the branch condition is true), and
similarly for the false case. We represent the kernel’s abstraction/reduction op-
erator for branch instructions by the formula {ao1t, ao1f , ao2t, ao2f} = absg(a

i
1, a

i
2).

Our correctness condition for jumps requires that the inputs are present in
the concretizations of the corresponding abstract value in both the true and false
branch outcomes. The formula below specifies this correctness condition.

∀xi
1, xi

2 ∈ C, ai1, ai2 ∈ A : memA(x
i
1, a

i
1) ∧memA(x

i
2, a

i
2) ∧

xo = concf (x
i
1, x

i
2) ∧ {ao1t, ao1f , ao2t, ao2f} = absg(a

i
1, a

i
2)⇒

((xo ⇒ (memA(x
i
1, a

o
1t) ∧memA(x

i
2, a

o
2t))) ∧ (3)

(¬xo ⇒ (memA(x
i
1, a

o
1f ) ∧memA(x

i
2, a

o
2f ))))

The above correctness condition can be extended to multiple domains in a man-
ner similar to Equation 2. The kernel’s implementation of the abstraction/reduc-
tion operator for a single jump instruction produces 20 output abstract values
(2 inputs × 2 branch outcomes × 5 domains).

4.2 Refining Soundness Specification with Input Preconditioning

When we checked the soundness of the kernel’s verifier using the soundness spec-
ifications in §4.1, we observed that many of the abstract operators are not sound.
However, it is unclear whether these violations are latent unsound behaviors, or
behaviors that could actually manifest with concrete eBPF programs. Specifi-
cally, the precondition in Equation 2 is too general, including any combination
of abstract values (across domains) as long as the intersection of their con-
cretizations is non-empty. Indeed, the abstract operators in the Linux kernel are
unsound if each instruction may start from any arbitrary abstract value across
domains. However, these combinations of abstract values may never be encoun-
tered in any eBPF program. Our goal is to refine the soundness specifications
from §4.1 to minimize reporting latent (but unmanifested) bugs.

Shared suffix of abstraction/reduction operator. Upon carefully ana-
lyzing the kernel’s abstraction/reduction operators, we observed that the kernel
performs certain common computations—a shared suffix of abstraction/reduc-
tion operations—right before producing each abstract output (Figure 3(a)). As
a concrete example, in kernel version 5.19, the function reg_bounds_sync is called
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at the end of each ALU operation [49], updating the signed domains using the
unsigned domains, the u64 bounds from u32 bounds and tnums, besides other
reductions [48].

Operator-
Dependent 

Prefix

Intermediate
Abstract 

State

Shared 
Suffix

Output
Abstract 

State

All Abstract Values

Reachable

Initial

(a) (b)

Fig. 3: (a) The structure of each abstrac-
tion/reduction operator in the kernel can
be conceptualized as having a prefix that
depends on the specific operator, generat-
ing an intermediate output, and a suffix
that is shared across all the operators, re-
sulting in the final abstract output. (b) We
use a refined soundness specification that
preconditions input abstract values a us-
ing the shared suffix sro(.) of the reduction
operators used in the Linux kernel.

Our key insight is that this shared
suffix of abstraction/reduction has the
effect of preconditioning the initial ab-
stract values for any subsequent in-
struction, narrowing down the set of
possible abstract values that a subse-
quent instruction may encounter as in-
put. Further, all eBPF programs start
executing from abstract values where
each register in every domain is ei-
ther ⊤ (any concrete value in the do-
main) or its concretization is a single-
ton (precisely known concrete value).
We observe and show using an SMT
solver that the shared suffix computa-
tion does not modify initial values.

Refined soundness specifica-
tion by preconditioning input ab-
stract values. We can leverage shared
suffix operations to refine our sound-
ness specification as follows. First, let
sro(a) denote the abstract outputs of
computing the shared suffix of the abstraction/reduction over the abstract in-
puts a ∈ A1×A2 · · · ×A5. The SMT formula encoding sro(a) is extracted using
our C to SMT encoder (§5). The main change from the specifications in §4.1 is
that the shared suffix preconditions the input values to any abstract operator.
Hence, for example, the soundness specification for two abstract domains from
Equation 2 is updated to use an input abstract value sro(a) as shown below:

∀xi
1, xi

2 ∈ C, ai11, ai21 ∈ A1, ai12, ai22 ∈ A2 :

(bi11, b
i
12) = sro(ai11, a

i
12) ∧ (bi21, b

i
22) = sro(ai21, a

i
22) ∧

memA1
(xi

1, b
i
11) ∧memA2

(xi
1, b

i
12) ∧memA1

(xi
2, b

i
21) ∧memA2

(xi
2, b

i
22) ∧

xo = concf (x
i
1, x

i
2) ∧ {ao1, ao2} = absg(b

i
11, b

i
12, b

i
21, b

i
22)

⇒ (memA1
(xo, ao1) ∧memA2

(xo, ao2)) (4)

It is straightforward to generalize to multiple domains. Refinement eliminated
most of the latent violations reported from §4.1. We found that the latest kernel
versions are sound with respect to value tracking.

4.3 Automatically Producing Programs Exercising Soundness Bugs

Even after refining the soundness specifications (§4.2), we still find a few viola-
tions of soundness. It is challenging to determine whether these violations are
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“real” (manifested in actual eBPF programs) or latent, since input abstract val-
ues preconditioned by sro still overapproximate the abstract values that may
occur when analyzing actual eBPF programs (Figure 3(b), §4.2).

We aim to automatically generate eBPF programs that manifest soundness
bugs (uncovered by the techniques in §4.2) in an actual kernel verifier execu-
tion. Our problem is a form of differential synthesis: generating programs whose
semantics diverge between the concrete execution and the abstract analysis.
We propose a sound but incomplete approach to generate eBPF programs that
demonstrate soundness violations. We enumerate loop-free programs up to a
bounded length, using an SMT solver to identify concrete and abstract operands
that manifest soundness violations.

Our approach is a combination of well-known existing techniques from enu-
merative [20, 52, 63] and deductive program synthesis [19, 41, 58, 67]. However,
unlike typical program synthesis problems which have a ∀∃ formula structure
(e.g. meet a specification on all inputs), our problem has a much more tractable
∃ structure, i.e. finding one concrete input and program to trigger a soundness
violation. In this sense, it is more akin to property-directed reachability algo-
rithms used in model checking [22,27].

Preliminaries. The eBPF run-time starts executing eBPF programs with
all live registers holding values that are either precisely known at compile time
(e.g. offsets into valid memory regions) or completely unknown (e.g. contents of
packet memory). For an abstract value a ∈ A1×A2 · · ·×A5, we say that init(a)
holds if a is either singleton (e.g. ∀x ∈ Z+

64 : [x, x] in u64) or ⊤ in each domain Ai.
We refer to such abstract values as initial abstract values. It is straightforward
to write down an SMT formula for init(a) for the kernel’s domains. We say
an abstract value b ∈ A1 × A2 · · · × A5 is reachable if there exists a sequence
of eBPF instructions for which the abstract analysis can produce b for some
register starting from input registers whose abstract values all satisfy init(·).

Overview. Given an abstract operator that violates the soundness speci-
fication in §4.2, our algorithm finds an eBPF instruction sequence that shows
that the violating input abstract values are reachable. For a bounded program
length k, we enumerate all sequences of eBPF concrete operators (i.e. arithmetic,
logic, and branching instructions) of length k− 1, with the kth instruction being
the violating concrete operator. This enumeration produces the “skeleton” of the
program, filling out the opcodes, but leaving the operands as well as the data and
control flow undetermined. For each skeleton, we discharge an SMT query that
identifies the concrete and abstract operands for k instructions with well-formed
data and control flow. The first instruction consumes eBPF initial abstract val-
ues. Starting from k = 1, if we cannot find an eBPF program of length k that
manifests the violation, we increment k and try again until a timeout.

Single instruction programs (k = 1). As the base case, we check whether
initial abstract values along with suitable concrete values may already vio-
late soundness (§4.2). For example, suppose our enumeration generated the 1-
instruction program v = bpf_or(t, u). For simplicity, below we work with just
one abstract domain. Building on Equation (1), we discharge the SMT formula:
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t, u ∈ C, at, au ∈ A :

init(at) ∧ init(au) ∧memA(t, at) ∧memA(u, au) ∧
v = concor(t, u) ∧ av = absor(at, au) ∧ ¬(memA(v, av)) (5)

If the formula is satisfiable, the model provides the concrete operands t, u, with
the result that bpf_or(t, u) is an executable eBPF program manifesting the
soundness violation. However, an unsound operator may fail to produce a model
since the necessary abstract operands lie outside the initial abstract values.

Straight-line programs, length k > 1. Larger the length of the program k,
larger the set of reachable input abstract values available to manifest a soundness
violation at the kth instruction. We exhaustively enumerate all possible (k −
1)-long instruction sequences. To enable well-formed data flow between the k
instructions, the inputs for each instruction are sourced either from the outputs
of prior instructions or initial abstract values.

For example, consider a two-instruction program (k = 2) generated by the
enumerator: r = bpf_and(p,q); v = bpf_or(t,u), We are looking for sound-
ness violation in bpf_or. The variables p, q, r, t, u, v are concrete values, with
corresponding abstract values ap, aq, · · · , av. The abstract inputs of the first in-
struction bpf_and are initial abstract values. The abstract inputs of the last
instruction may be drawn from either ap, aq, ar or the initial abstract values.
We use the formula assign(x, {y1, y2, · · · }) to denote that x is mapped to one of
the variables y1, y2, · · · in both the concrete and abstract domains. We can write
down assign(x, {y1, y2, · · · }) ≜ (x = y1 ∧ ax = ay1) ∨ (x = y2 ∧ ax = ay2) ∨ · · · .
We discharge the following SMT formula to a solver:

p, q, r, t, u, v ∈ C, ap, aq, ar, at, au, av ∈ A :

init(ap) ∧ init(aq) ∧memA(p, ap) ∧memA(q, aq) ∧
r = concand(p, q) ∧ ar = absand(ap, aq) ∧memA(r, ar) ∧

(init(at) ∨ assign(t, {p, q, r})) ∧ (init(au) ∨ assign(u, {p, q, r})) ∧
memA(t, at) ∧memA(u, au) ∧

v = concor(t, u) ∧ av = absor(at, au) ∧ ¬(memA(v, av)) (6)

A model for the formula produces the concrete and abstract operands for the two
instructions, leading to an executable bug-manifesting program. This approach
is extensible to more instructions and more abstract domains.

Loop-free programs. Incorporating branch instructions significantly broad-
ens the set of input abstract values available to the kth instruction, improving
the likelihood of finding a bug-manifesting program at a given length. We turn
each branch into a single-instruction ite whose outputs are available for subse-
quent instructions. More concretely, (i) any of the 1 · · · k−1 instructions may be
jump instructions; (ii) the jump target of a branch instruction in the ith slot for
both outcomes (i.e. true or false) points to the i+1th slot, and (iii) the abstract
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outputs of the branch (e.g. from Equation (3)) may be used as abstract inputs
for subsequent instructions, similar to arithmetic and logic instructions.

As an example, suppose our enumerator produces r = bpf_jump_gt64(p,q,0);
v = bpf_or(t,u). Here r is a concrete value which is either true or false. We use
0 as the jump target, always pointing branches to the next instruction. There are
four abstract outputs from the jump: apt, aqt for the true branch and apf , aqf for
the false branch (see §4.1). For convenience, we set the abstract value aop (resp.
aoq) to either apt or apf (resp. aqt or aqf ) based on the branch outcome; and also
assert that the corresponding final concrete values po = p and qo = q. Building
on Equation (3), we ask the SMT solver for a model of the formula:

p, q, t, u, v ∈ C, r ∈ {true, false}, ap, aq, at, au, av ∈ A :

init(ap) ∧ init(aq) ∧memA(p, ap) ∧memA(q, aq) ∧
r = concjump_gt64(p, q) ∧ {apt, apf , aqt, aqf} = absjump_gt64(ap, aq) ∧

(r ⇒ (memA(p, apt) ∧memA(q, aqt) ∧ aop = apt ∧ aoq = aqt)) ∧
(¬r ⇒ (memA(p, apf ) ∧memA(q, aqf ) ∧ aop = apf ∧ aoq = aqf )) ∧

(init(at) ∨ assign(t, {po, qo})) ∧ (init(au) ∨ assign(u, {po, qo})) ∧
memA(t, at) ∧memA(u, au) ∧

v = concor(t, u) ∧ av = absor(at, au) ∧ ¬(memA(v, av)) (7)

Validation of manifested soundness violations. The programs gener-
ated by our approach for bugs with known CVEs were similar to the proof-of-
concept implementations found in these CVEs. For previously unknown bugs,
we logged the kernel verifier’s state as it analyzes eBPF programs and also ex-
ecuted the eBPF program with the concrete operands produced by the SMT
solver. We compared the parameters in the SMT solver’s model and those from
the kernel verifier and run-time result. This process entailed manually compiling
and booting into each kernel version that we check, and running the generated
programs. For the manifested bugs, we found exact agreement between the SMT
model and the observed behaviors in all cases we checked.

5 C to Logic for Kernel’s Abstract Operators

To prove the soundness of the kernel’s abstract operators, we first have to extract
the input-output semantics of the operators from the kernel’s implementation in
C into first-order logic. It is tedious and error-prone to manually write down the
formulas for each version of the kernel. Further, the verifier’s abstract semantics
can change across versions. Hence, we automatically generate the first-order
logic formula (in SMT-LIB format) directly from the verifier’s C source code.
Modeling C code in general is hard [42, 46, 64]. However, we observe that it is
sufficient to handle a subset of C for the verifier’s value-tracking routines.

Verifier’s C code for value-tracking. The kernel uses two integers to
represent abstract values for each of the five domains (§3). These 10 integers
are encapsulated in a structure named bpf_reg_state (reg_st for short). The
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tnum domain is further encapsulated within reg_st in a struct called tnum. This
static “register state” is maintained for each register in the eBPF program being
analyzed. The kernel has a single top-level function called adjust_scalar_min_-

max_vals (adjust_scalar for short) that is called for each abstract operator corre-
sponding to ALU instructions [16]. This function takes three arguments: opcode
and two register states named dst and src that track the abstract value in the
destination and source register of the eBPF instruction, respectively. Depending
on the opcode, one of several switch-cases is executed, which leads to instruction-
specific function calls that modify the abstract values in dst and src. None of the
functions updating register state in the call-chain have recursion or loops. The
kernel has a structured way of accessing the members of reg_st. We use these
specific features to translate C code to logic. The structures of the corresponding
functions for jumps (reg_set_min_max and descendants) are similar.

Preprocessing the verifier’s C code. We use the LLVM compiler’s [47]
intermediate representation (IR) because it allows us to handle complex C code
and provides a collection of tools to modify, optimize, and analyze the IR. Figure
4(a) shows an overview of our tool’s pipeline. Consider the case where we want
to generate the SMT-LIB file for the abstract operator corresponding to the 32-
bit bitwise OR instruction (bpf_or32). After obtaining the verifier’s code in IR
(stage 1 ), we proceed to apply our custom IR-transforming passes (stage 2 ).
First, we remove functions that are not relevant to our purpose because they
do not modify register state. Next, we inline all the function calls that adjust_-

scalar makes. Inlining is possible because there are no recursive functions or
loops in the call-graph. Next, we need to create a slice of the verifier that is
only concerned with bpf_or32. We inject an LLVM instruction in the entry basic
block of adjust_scalar which sets the opcode to bpf_or32. LLVM’s optimizer
removes all irrelevant code from this IR with constant propagation and dead-code
elimination. Next, we adapt a transformation pass from Seahorn’s [42] codebase,
which allows us to lower memcpy instructions to a sequence of stores. The result is
a single function in LLVM IR, which captures the action of the abstract operator
given input abstract states (i.e., dst and src) for one instruction (bpf_or32).

The LLVMToSMT Pass. In step 3 , we use the theory of bitvectors to
generate the first-order logic formula for the function obtained from step 2 .
Since we encode everything with bitvectors, we need a memory model to capture
memory accesses. We model memory as a set of two disjoint regions pointed to
by dst and src. Given that the memory is only accessed via the structure reg_st’s
fields, we can further view memory as a set of named registers. This allows us to
model the entire memory as a tree of bitvectors: the leaf nodes store bitvectors
corresponding to the first-class members of reg_st (e.g. for u64_min), the non-leaf
nodes store trees of aggregate types (e.g. for tnum). C struct member accesses
in IR begin with a getelementptr (GEP) instruction, which calculates the pointer
(address) of the struct’s member. We use an indexing similar to that used by
GEP to to identify the bitvector that corresponds to the accessed member.

Handling straight line code and branches. LLVM’s IR is already in SSA
form. Every IR instruction that produces a value defines a new temporary virtual
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clang

LLVMToSMT

1. define void @adjust_scalar_bpf_or32(reg_st* %dst, reg_st* %src) {
2. entry:
3. ; liveOnEntry
4.   %x0 = getelementptr reg_st, reg_st* %src, i64 0, i32 4, i32 0
5. ; MemoryUse(liveOnEntry)
6.   %x1 = load i64, i64* %x0
7.   %x2 = icmp eq i64 %x1, 0
8.   br i1 %x2, label %ltrue, label %lend

9. ltrue:
10.   %x4 = getelementptr reg_st, reg_st* %dst, i64 0, i32 5
11. ; 1 = MemoryDef(liveOnEntry)
12.   store i64 0, i64* %x4
13.   %x5 = getelementptr reg_st, reg_st* %dst, i64 0, i32 6
14. ; 2 = MemoryDef(1)
15.   store i64 4294967295, i64* %x5
16.   br label %lend

17. lend: 
18. ; 3 = MemoryPhi({entry,liveOnEntry},{%ltrue,2})
19.   ret void
20. }

➀ 

➁ 

➂

Fig. 4: (a) The pipeline for automatically generating an SMT-LIB file from the Linux
kernel’s verifier.c. Shown here is an instance of the pipeline for the bpf_or32 instruc-
tion. (b) The LLVM IR presented as a CFG, overlaid with MemorySSA analysis in
red, for a function adjust_scalar_bpf_or32 that is representative of verifier code for
bpf_or32. It takes as input two structs dst and src and modifies them.

register. We create a fresh bitvector variable when we encounter a temporary in
the IR. Consider a simple addition instruction: %y = add i64 %x, 3. To encode
the instruction, we create a formula that asserts an equality between a fresh
bitvector BVy and the existing one BVx, based on the semantics of the instruction:
BVy == BVx + BVconst3.

To handle branches, we precondition the SMT formula for each basic block
with its path condition. As the IR we analyze does not contain loops, the control
flow graph (CFG) is a directed acyclic graph. Hence, the path condition of each
basic block is a disjunction of path conditions flowing through each incoming
edge into the node corresponding to that block in the CFG. Phi nodes (ϕ’s) in
SSA merge the values flowing in from various paths. We use the phi instructions
in IR to merge incoming values. We calculate an “edge condition” formula for each
incoming edge to the phi. Then, we encode the phi instruction by appropriately
setting the bitvector to the incoming values based on the edge condition.

Handling memory access instructions. Our tool leverages LLVM’s Mem-
orySSA analysis [17] to handle loads and stores. The MemorySSA pass creates
new versions of memory upon stores and branch merges, associates load instruc-
tions with specific versions, and provides a memory dependence graph between
the memory versions. Figure 4 (b) shows an example CFG in IR overlaid with
MemorySSA analysis (red). We maintain a one-to-one mapping between the dif-
ferent versions of memory presented by MemorySSA, and versions of our memory
model consisting of bitvector-trees. liveOnEntry (line 3) is the memory version
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at the start of the function. The bitvectors in the corresponding bitvector-tree
are the input operands for the kernel’s abstract operators.

Every load instruction is annotated with a MemoryUse (e.g.. the load instruc-
tion on line 6 reads from the liveOnEntry memory version), and preceded by a
GEP. Thus, we choose the appropriate bitvector-tree and index into it to obtain
the appropriate bitvector (say BVsrc0). We encode the load instruction as: (BVx1 ==

BVsrc0). A store instruction (e.g. line 12, annotated using a MemoryDef) modifies an
existing memory version (liveOnEntry) to create new version (1). We create a new
bitvector-tree and map it to version 1. The bitvectors in this bitvector-tree are
exactly the same as liveOnEntry’s, except for the bitvector in the location that
the store modifies. The latter bitvector is replaced with the bitvector mapped
to the temporary used for the store. For a MemoryPhi node (e.g. line 18, creating
version 3), we create a new bitvector-tree for the latest memory version (e.g. 3).
Similar to regular phi nodes, we use the edge condition of the incoming edges to
conditionally set each bitvector in the new bitvector-tree to the corresponding
bitvector in the memory version propagated through that edge.

The bitvector-tree corresponding to the active memory version at the point
of the (unique) ret instruction (e.g. 3 in the lend block) contains the output
operands for the kernel’s abstract operators.

6 Experimental Evaluation

Our prototype, Agni [18, 72], automatically checks the soundness of the value
tracking algorithms in various versions of the kernel eBPF verifier. It uses LLVM
12 [47] for the C to logic translation and the Z3 SMT solver [36] for checking
formulas. The source code for our prototype is publicly available [18, 72]. We
evaluate Agni to determine the effectiveness in checking soundness of the kernel
verifier and the ability to generate eBPF programs that manifest soundness
violations (which we call proof-of-concepts, or POCs).

Checking soundness across kernel versions. We have automatically
checked the soundness of all combinations of abstract operators and abstract
domains for kernels between versions 4.14 and 5.19. Figure 5(a) provides a sum-
mary of our results. To keep the size of the table short, we only report kernel
versions starting from 4.14 that are known to have a documented CVE or a bug
that is distinct from one in a prior kernel version (4.14, 5.5, 5.7-rc1, 5.8, ...).
We evaluated intermediate kernel versions that are not reported; our tool can
support all kernel versions between 4.14 to 5.19 (the latest as of this writing).

We compare our generic soundness specification (§4.1, labeled gen in columns
2,4,6) and the refined one (§4.2, labeled sro in columns 3,5,7). A kernel with
at least one potentially unsound domain or operator is considered unsound
(columns 2 and 3). Operator+domain pairs that violated the soundness specifi-
cation are reported in columns 4 and 5. Those operators that violated soundness
in at least one domain are reported in columns 6 and 7.

All kernel versions including the latest ones are unsound with respect to
the generic soundness specification (column 2). Even in one of the latest ver-
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Kernel 
Version

Num. of 
Total 

Violations

All 
POCs 
Synth?

Program 
Length

1 2 3

4.14 21 ✕ 14 4 0

5.5 30 ✕ 0 20 2

5.7-rc1 99 ✔ 55 44 0

5.7 67 ✔ 39 28 0

5.8 67 ✔ 39 28 0

5.9 65 ✔ 39 26 0

5.10 65 ✔ 19 44 2

5.10-rc1 71 ✔ 39 32 0

5.11 62 ✔ 16 44 2

5.12 62 ✔ 16 44 2

Kernel 
Version

Sound?
Num. of 

Violations

Num. of 
Unsound
Operators

gen sro gen sro gen sro

4.14 ✕ ✕ 23 21 9 7

5.5 ✕ ✕ 32 30 12 10

5.7-rc1 ✕ ✕ 101 99 31 31

5.7 ✕ ✕ 69 67 15 15

5.8 ✕ ✕ 69 67 15 15

5.9 ✕ ✕ 67 65 15 15

5.10 ✕ ✕ 74 65 17 17

5.10-rc1 ✕ ✕ 74 71 17 17

(b)(a)

Kernel 
Version

Sound?
Num. of 

Violations

Num. of 
Unsound
Operators

gen sro gen sro gen sro

5.11 ✕ ✕ 71 62 16 16

5.12 ✕ ✕ 71 62 16 16

5.13 ✕ ✔ 9 0 6 0

5.14 ✕ ✔ 9 0 6 0

5.16 ✕ ✔ 9 0 6 0

5.17 ✕ ✔ 9 0 6 0

5.18 ✕ ✔ 9 0 6 0

5.19 ✕ ✔ 9 0 6 0

Fig. 5: (a) Soundness violations detected with the generic soundness specification (§4.1,
labeled gen) in comparison to the refined specification (§4.2, labeled sro). We show
the number of violating operator+domain pairs (columns 4-5) and number of unsound
operators (columns 6-7) (b) Number of generated POCs and their lengths for unsound
operator+domains after sro checks.

sions of the kernel (v5.19), 6 operators corresponding to bpf_xor64, bpf_xor32,
bpf_and64, bpf_or64, bpf_or32, and bpf_and32 are unsound according to the
generic soundness specification (column 6, row of kernel version 5.19). Refining
the soundness specification enables us to prove the soundness of all operators in
kernels newer than 5.13 (column 3). However, even the latter reports violations
for older kernels. Among those violations, 27 were previously unknown. A single
wrong abstract operator can violate the soundness of many abstract domains (up
to 5). The refined (sro) specification reduces the reported soundness violations
by ≈ 6.8% in potentially unsound kernel versions and by 100% in sound ones.

We observed that the 64-bit jump instructions and 64-bit/32-bit bitwise in-
structions exhibited the largest number of soundness violations. The unsound-
ness persisted across multiple kernel versions (until eventually patched).

Generating POCs for unsound kernels. We evaluate the ability of differ-
ential synthesis (§4.3) to generate eBPF programs that manifest soundness bugs.
Figure 5(b) summarizes our results. Starting with operator+domain pairs from
soundness violations uncovered by sro (column 2), we report whether all opera-
tor+domain violations were successfully manifested using POCs (column 3) and
the lengths of the POCs successfully generated (columns 4,5,6). We produced a
POC for ≈ 97% of soundness violations across kernel versions (validated as de-
scribed in §4.3). The smallest POCs for many violations require multi-instruction
programs. For example, none of the soundness violations in version 5.5 may be
manifested with a single eBPF instruction. We generated a POC for all sound-
ness violations for all but 2 versions of the kernel (for versions 4.14 and 5.5,
we generated a POC for all but 3 and 8 violations respectively). The ability
to manifest almost all of the reported sro violations speaks to the significance
and precision of the refinement in the soundness specification. Our differential
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synthesis technique may enable developers to experiment with concrete eBPF
programs to validate and debug unsound behaviors in the kernel verifier.

Some bugs in the eBPF verifier are well known security vulnerabilities and
have known POCs [51,62]. We have generated a POC, of equal or lesser size, for
all known CVEs in the kernel versions analyzed. For example, we have generated
a POC for a well known bug with two instructions instead of four [62].

Time taken to verify kernels and generate POCs. We conducted our
experiments on the Cloudlab [37] testbed, using a machine with two 10-core In-
tel Skylake CPUs running at 2.20 GHz with 192GB of memory. When using the
generic soundness specifications, 90% of the abstract operators (eBPF instruc-
tions) were checked for soundness within ≈ 100 minutes. If deemed unsound,
the refined specification was checked in ≈ 30 minutes for ≈ 90% of the unsound
operators. On the extreme, verifying some operators, as well as finding a POC
for some soundness violations, may take a long time (2000 minutes or more). We
attribute this to the significant size of the SMT-LIB formulas that are generated.
We were able to find POCs for 90% of the soundness violations in kernel versions
5.7-rc1 through 5.12 within a few hours.

7 Limitations and Caveats

The results in this paper must be interpreted with the following caveats.
Only range analysis is considered. There are other static analyses in the

kernel verifier beyond range analysis (§1). These include tracking register liveness
for reading and writing, and detecting speculative execution vulnerabilities.

Coverage of eBPF abstract operators. We exclude verifying the sound-
ness of the abstract operators corresponding to multiplication as they cause our
SMT verifications to time out. This is primarily due to the presence of 64-bit
bitvector multiplication in the SMT encoding of these operators. We have veri-
fied their soundness using 8-bit bitvectors. Our results on (un)soundness cover
all other abstract arithmetic, logic, and branching operators (§4.1).

Trusted computing base. Our C to SMT translation (§5) and soundness
proofs have software dependencies including the LLVM compiler infrastructure,
the Z3 solver, and our translation passes, which together form our trusted com-
puting base. We have unit tested our C-to-SMT translations extensively. We
validated our synthesized POCs by manually executing them in Linux kernels
running inside the QEMU emulator, replicating the soundness bugs. Despite our
best efforts, it is possible that there are bugs in our software infrastructure.

Incompleteness of differential synthesis. The differential synthesis ap-
proach is incomplete (§4.3). If our refined verification condition (Equation (4))
finds an operator unsound, and the synthesis is unable to produce a POC, there
are two possibilities. First, there may be long programs which could manifest the
unsound behavior. Our enumerative algorithm currently times out for programs
of length ≥ 4. Second, it is possible that the bug cannot be manifested with
any concrete eBPF program, and is reported due to overapproximation in the
soundness specification.
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8 Related Work

Closest related work. The two closely related prior works are: (1) a paper
on tnum verification [71], and (2) a recent manuscript on verifying range analy-
sis [21]. The tnum paper explores formal verification for a single abstract domain:
tnums. The recent manuscript [21] also aims to prove the soundness of the eBPF
verifier’s value-tracking. In contrast, our work differs by (1) exposing the non-
modular nature of the abstract operators in the kernel, and (2) proposing a
method to reason about abstract operators for both arithmetic and branches,
(3) automatically generating VCs from kernel source code, and (4) synthesizing
eBPF programs that exercise the divergence of abstract and concrete semantics.

Safety of eBPF programs and static analyzers. eBPF compilation and
interpreter safety has been a site of recent endeavors [59, 60, 69, 73, 74]. PRE-
VAIL [39] uses abstract interpretation using the zone abstract domain for check-
ing safety outside the kernel. In contrast, we focus on proving the soundness of
the in-kernel verifier.

Abstract interpretation and domain refinement. Prior work on ab-
stract interpretation [30, 31, 33] and value-tracking abstract domains [55, 56, 68]
have indirectly influenced the eBPF verifier’s design [61,71]. The idea of combin-
ing abstract domains to enhance the precision of abstract representations was
first introduced by Cousot with the reduced product and disjunctive completion
domain refinements [29, 34] and further improved by others [70]. A systematic
survey on product abstract operators is also available [28]. Specifically, we tailor
our work to verify the abstract operators in the Linux kernel.

C to first-order logic. Similar to our approach that generates first-order-
logic formulas from C code, prior tools also generate verification conditions from
C code [42,46,54,64]. A few of them, SMACK [64] and SeaHorn [42], use LLVM
IR for this purpose. These tools support a rich subset of C. They typically model
memory as a linear array of bytes, which is not ideal for modeling kernel source
code. We explore a subset of C that is sufficient to handle kernel code and still
generates queries using only the bitvector theory, which enables us to efficiently
verify soundness for multiple versions of the kernel.

9 Conclusion

We present a fully automated method to verify the soundness of range analysis in
the Linux kernel’s eBPF verifier. We are able to check the soundness of multiple
kernel versions automatically because we generate the verification conditions for
the abstract operators directly from the kernel C code. We develop specifications
for reasoning about soundness when multiple abstract domains are combined in a
non-modular fashion in the kernel. Our refinement to this specification, capturing
preconditioning in the kernel, proves the soundness of recent Linux kernels. We
also succesfully generate concrete eBPF programs that demonstrate the diver-
gence between abstract and concrete semantics when soundness checks fail. Our
next step is to push for incorporating this approach in the kernel development
process, to help eliminate verifier bugs during code review.
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