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1 Introduction
My research develops static analysis to enable safe extension
of operating system (OS) kernels. I focus on the Extended
Berkeley Packet Filter (eBPF) [7, 21], that has emerged as
a new standard for extending the Linux operating system.
With eBPF, developers can write custom code that can dy-
namically change the way the kernel functions, without
needing to recompile the kernel and reboot into it.

eBPF is an in-kernel virtual machine with a custom 64-bit
instruction set. Developers write programs directly in eBPF
bytecode, or in a high level language like C and invoke the
Clang compiler to compile the C code to eBPF bytecode. Pro-
grams are then passed to the kernel to be attached to specific
hooks: attachment points available at various locations in the
kernel. Before attaching the program however, an in-kernel
static analyzer, called the eBPF verifier, checks the safety of
the supplied bytecode. Once the program passes the safety
checks, it is JIT compiled to the native architecture of the
machine, and attached to the specified hook. Because eBPF
programs run in kernel space as native machine instructions,
they are able to achieve high performance.
The focus of my work has been on the eBPF verifier.

It is paramount the static analysis in the eBPF verifier is
sound and precise. However, the status quo falls short. Un-
sound static analysis allows malicious behaviors; exploits
can use well-crafted inputs (e.g., packets) to escalate user
privileges [18–20]. Imprecise static analysis rejects safe pro-
grams forcing developers to wrestle with the verifier [8, 23].
Figure 1 shows a non-exhaustive list of the various safety
considerations in the eBPF verifier. My research provides
soundness and precision guarantees in the value tracking
analysis in eBPF verifier (top left in Figure 1).
The rest of this document offers an overview of influen-

tial prior research literature that has shaped my research
endeavors. Its purpose is to outline the design considerations
and key contributions of each paper while also aiming to
identify potential avenues for future research.

1. Section 2 summarizes works that aim to guarantee
functional correctness of compiler translations using
formal methods.

2. Section 3 summarizes key ideas in program synthesis.
3. Section 4 is an overview of PREVAIL [8], a replacement

to Linux’s in-kernel eBPF verifier.
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Figure 1. Safety considerations in the eBPF verifier. The focus of
my work has been on the eBPF verifier’s value tracking analysis.

2 Verified compilers
This section summarizes works that aim to guarantee
functional correctness of compiler translations using formal
methods. While these works happen to target just-in-time
(JIT) compilers, the techniques have also been used in other
settings. Note that in the context of eBPF, JIT compilers are
“just-in-time” in the sense that a compiler within the kernel
translates the eBPF bytecode down to native instructions
dynamically, as it recieves it. It is not a typical JIT that
interleaves interpretation and execution of compiled hot
code.

2.1 Jitk
Jitk [26] targets eBPF programs that specify system call poli-
cies. In this use-case of eBPF, a developer first writes an
eBPF program specifying system call policies and submits
it to the kernel. The kernel then executes the program to
decide whether to allow or deny a specific system call an ap-
plication makes. Jitk aims to produce correct native machine
code: one that correctly implements system call policies in-
tended by the developer when executed. An additional goal
Jitk has is in ensuring safety, which in this context means
proving that the native machine code terminates and uses a
bounded amount of stack space.
Writing eBPF code is error prone. Targetting such a spe-

cific use-case of eBPF allows Jitk to define a customhigh-level
specification language for this purpose (System Call Policy
Language, or SCPL). Developers specify system call policies
in SCPL. Being a much restrictive subset of eBPF, develop-
ers are likely to make less mistakes in specifying policies in
SCPL.
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The overall compilation happens in 3 phases. First, Jitk’s
SCPL compiler translates SCPL policies to eBPF bytecode.
Next, an eBPF compiler is then invoked to translate eBPF
bytecode to Cminor, an intermediate languate used in Com-
pCert’s [12] C compiler. CompCert’s compilation backend
finally translates Cminor to native code.
Both the SCPL-to-eBPF and the eBPF-to-Cminor compil-

ers are written in Coq. Jitk models the semantics of SCPL,
eBPF, and Cminor as state-transition systems. While Jitk
needs to provide the state transition semantics for SCPL and
eBPF, it borrows the one for Cminor from CompCert. Prov-
ing correctness of semantics preservation is done through a
(forward) simulation of state transitions in the correspond-
ing pairs of translations. For instance, in the eBPF-to-Cminor
transltion, Jitk proves using Coq that every state transition
in eBPF corresponds to some state transition(s) in Cminor.
For each compiler, Jitk’s Coq source code consits of the

specification, the implementation, and the a proof that the
implementation matches the specification. The Coq proof
checker verifies that the proof is correct. The implementation
is extracted into OCaml code, and is finally converted to a
native executable in the target language.
Discussion. In compilers, generally proving semantics

preservation between translations involves proving back-
ward simulation: every time the target program (𝑇 ) under-
goes a state transition, the source program (𝑆) also under-
goes a state transition [2]. Backward simulations are harder
to prove because one needs to consider all transitions 𝑇
can take, and trace them back to transitions in 𝑆 . This gets
tricky when 𝑇 (x86 assembly) can take several transitions
for one transition in 𝑆 (eBPF bytecode). Using Cminor as an
intermediate compilation target gives Jitk the advantage of
not having to prove backward simulation in order to prove
preservation of semantics when compiling down to x86. Jitk
composes forward simulation proofs between SCPL to eBPF
and eBPF to Cminor, and uses CompCert’s proofs to build
the backward simulation between x86 and SCPL. Jitk’s idea
of using an intermediate languages like Cminor is useful in
bridging the semantic gap between eBPF and x86.

2.2 VeRA
A browser’s JIT compiles and executes all the JavaScript code
downloaded from the web pages during browsing sessions.
These JITs are frequently exposed to malicious JavaScript
code that is aimed at exploiting any vulnerabilities in the
JIT. Successful exploits have allowed the code to escape the
browser’s sandbox, facilitating remote code execution. Typi-
cally, a compiler emits extra instructions that perform safety
checks and help provide the safety guarantess that the lan-
guage promises. For example, a JIT may emit instructions
before an array access to validate that the array access is
within bounds. While safety checks are essential for security,
excessive checks can slow down browser performance. To
this, address this, JITs perform static analyses to compute

facts about the code that can facilitate the removal of execes-
sive runtime checks. For instance, a static range analysis can
be performed on the variables used as indices for array access.
This analysis calculates the range of possible values a vari-
able can take, at different program points. If the analysis is
able to prove that the index is always within bounds (greater
than 0, and less than the length of the array) before the array
access, it elides emitting the extra bounds-checking machine
code. VeRA [4] is a system designed to verify the correctness
of these range analyses within Firefox’s JavaScript JIT.
Firefox JITs range analysis routines are written in C++.

VeRA provides a subset of C++ (VeRA C++) to write these
range analysis routines. VeRA C++ enforces a finite seman-
tics by disallowing loops and recursion (none of the range
analysis routines in the Firefox JIT contain such constructs).
VeRA C++ program is compiled to an intermediate represen-
tation (IR), built for verification: it is free of control flow, func-
tion calls, and maintains a SSA (Static Single Assignment)
form for variable assignments. The IR is finally converted to
SMT by a custom compiler.
Range analysis in JavaScript is somewhat more involved

than settings like eBPF, because it requires reasoning about
floating point numbers. An abstract value that tracks ranges
of variables in JavaScript code does not simply keep track of
a lower and an upper bound for that variable: it additionally
tracks whether the range includes non-integrals, whether
the value can be a negative zero, and so on. This also makes
converting the C++ code to SMT complicated because the
C++ types and operators have different semantics from the
SMT counterparts. For example, the semantics of a right shift
operator (>>), in C++ depends the type of the value being
shifted, while SMT defines two separate operators for logical
and arithmetic right shift. VeRA disambiguates the semantics
when converting to IR by choosing the correct C++ operator
based on the typing context. Using an IR helps bridge the
semantic gap between C++ and SMT.
The authors present a verification condition that can be

used to prove the correctness of range analyses, inspired by
techniques in abstract interpretation [5]. A range analysis
in JavaScript tracks among other things, a lower and upper
bound of a program variable (a range). As the program vari-
able undergoes operations in the JavaScript code, a range
analysis must define corresponding operations that modify
the upper and lower bound of the range. Consider a program
point where x is deemed to be in the range [0, 5] and y is
deemed to be in the range [4, 14], before the execution of
the statement z = x + y. A range addition operator per-
forms an ‘addition’ on the incoming range for x and y, and
computes the range for the program variable z to be [4, 19].
Implementing a range operator might seem trivial from our
example above, but an implementation quickly gets compli-
cated when one considers other operators, overflows, and
floating point values.
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How to reason about the soundness of a range operator?
An intuitive notion of soundness is that all possible values
a program variable can take at runtime at a program point
should be contained within the range computed for that
variable at that program point (𝑖 .𝑒 ., it should never be the
case that during some execution the variable takes a value
outside the computed range). VeRA’s verification condition
captures this notion of containment.
Let 𝑋 be the range object that tracks the range of val-

ues the variable 𝑥 takes using an upper and lower bound:
𝑋 ≜ [𝑋 .upper, 𝑋 .lower]. The inRange predicate captures
the notion that all the values 𝑥 can take is bounded by 𝑋

(contained in 𝑋 ).

inRange
(
𝑋, 𝑥

)
≜ 𝑋 .upper ≤ 𝑥 ≤ 𝑋 .lower.

Similarly, let 𝑌 be the range object tracking range of the
variable 𝑦. The verification condition captures the idea that
a sound range operator preserves containment. For a range
operator op𝑅𝐴 (·, ·) corresponding to the JavaScript operator
op𝐽 𝑆 (·, ·), the verification condition is defined as follows:

∀𝑋,𝑌, 𝑥,𝑦 :
inRange

(
𝑋, 𝑥

)
∧ inRange

(
𝑌,𝑦

)
∧

𝑍 = op𝑅𝐴 (𝑋,𝑌 ) ∧ 𝑧 = op𝐽 𝑆 (𝑥,𝑦)
=⇒ inRange

(
𝑍, 𝑧

)
The actual inRange predicate is more complicated than the
one mentioned above: it also defines conditions on the com-
ponents of a range object other than 𝑋 .upper and 𝑋 .lower.

The implementation of op𝑅𝐴 is written in VeRA C++ and
extracted to SMT. The semantics of the operators op𝐽 𝑆 is
crafted by hand in SMT. Using the SMT representations in
logic, the authors discharge the verification condition as a
query the SMT solver. In case of a range analysis bug, the
solver will return a counterexample that shows a program
variable x not contained in its range 𝑋 . Using this technique,
VeRA was able to capture a bug in the ceil range operator
in JavaScript JIT, and confirm the presence of other bugs
which were fixed in the past.

Discussion.VeRA’s technique of verifying range analyses
has proved useful in my work. The verification condition we
use to verify the soundness of the operators for the domain
of tristate numbers used in the Linux kernel’s eBPF verifier
is similar in structure to the one specified by VeRA for the
range domain [24]. In my more recent work called Agni [25],
we analyzed the soundness of the Linux kernel’s analysis
across all the domains it uses for tracking values of program
variables. Here too, we used a slightly modified version of
the same verification condition.

Writing implementations of code that needs to be verified
in a DSL (or a subset like VeRA C++) is a common theme
to bridge the semantic gap between a higher level language
and SMT, and make verification tenable. Our objective with
Agni was to automaticall verify all the range analysis code in

Linux across all kernel versions. Writing the kernel’s range
analysis for each kernel version in a DSL would be very
tedious. Our approach in Agni was to rely on the LLVM IR.
We wrote LLVM passes that exploit the features of the IR to
convert the range analysis code to SMT, and verify it. Writing
new range analysis code in a DSL and then converting it to C
to be used in the kernel would likely reduce errors. However,
it is difficult to integrate new know-how (DSL) and new
tools (DSL compilers) into the Linux kernel’s continuous
integration environment. We eventually decided that using
supporting a subset of LLVM IR can be sufficient to verify
existing and new range analyses in the kerrnel.

2.3 Serval
While systems like Jitk use interactive theorem provers that
allow verification of higher-order properties by employing
richer logics, they require manual proofs and generally in-
volve significant developer effort. A trade-off is made with so
called push-button verification systems [15, 25]. These sys-
tems focus (developer effort) on (desigining) software with
a finite semantics: no unbounded loops, no recursion, etc.
An automated verifier symbolically evaluates the implemen-
tation to a first-order logic formula. Given a specification
that the implementation must satisfy, a satisfiability query
is formulated and discharged to an SMT solver to check if
the implementation matches the specification.

Serval [14] aims to ease the development of the these auto-
mated verifiers, while making the approach general enough
to be applicable to multiple domains (in this context, instruc-
tion sets architectures). The key idea in Serval is to create
automated verifiers by writing interpreters for an instruction
set that work on symbolic values. This is possible because of
Rosette, an extension of the Racket programming language
that eases symbolic reasoning. Developers write interpreters
for concrete states in Rosette, and Rosette allows ‘lifting’ the
intepreter to work on symbolic states. This lifted interpreter
(for a particular instruction set) symbolically evaluates an
implementation and reduces the semantics of the implemen-
tation to symbolic values.
An interpreter for a particular instruction set written in

Rosette runs a symbolic fetch-execute-decode loop on the
instructions of the program. Starting with a symbolic CPU
state (𝑒.𝑔. program counter and registers), interpreting the
program produces a symbolic state that encodes all possible
behaviors of the program. It is important to note here that
developers need to write these interpreters for each instruc-
tion set they are interested in. While it is not trivial to get
this step entirely correct, one can reuse the existing CPU
test suites for the specific instruction set to gain confidence.
The authors of Serval provide interpreters for RISC-V, LLVM,
x86-32, and eBPF instructions. Finally, the developer also
provides the specification that captures the intended behav-
ior of the program in Rosette. Serval uses Rosette’s SMT
backend to generate constraints that are then discharged to
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Figure 2. An instantion of Serval’s pipeline for verification of
eBPF JIT, considering RISC-V target.

an SMT solver to check if the implementation matches the
specification.
Using Rosette allows Serval to perform some useful op-

timizations as it encodes the program’s semantics. For in-
stance, Rosette contains optimizations that merge two states
produced by a comparison instruction: under the instruction
gtz a, b (set b to 1 if a is greater than 0, else set b to 0), the
states (𝑎 > 0, 𝑏 = 1) and (𝑎 ≤ 0, 𝑏 = 0) are merged to a
single state ite(𝑎 > 0, 𝑏 = 1, 𝑏 = 0) by a Rosette optimization.
Evalution can continue using this single compact encoding
instead of exploring each path separately.
But now, consider the case of a jump instruction

jlt a, b, 4 (jump 4 instructions if a is greater than b).
After merging the states corresponding to the program
counter, the program counter pc becomes symbolic:
ite

(
(𝑎 > 0), 𝑝𝑐 = 𝑝𝑐 + 4, 𝑝𝑐 = 𝑝𝑐 + 1

)
. This a problem be-

cause now the interpreter has to conservatively consider all
possible values of 𝑝𝑐 in order to fetch the next instruction.
For large programs with nested conditionals, the number
of states to explore explodes quickly. Serval addresses this
by providing an optimization that works like a peephole
optimization on symbolic states, borrowing from previous
works in symbolic profiling [3]. First, it effectively undoes
the state merging done by Rosette on 𝑝𝑐 , while keeping
the other parts of the state unchanged, then evaluates the
program separately on each possible concrete value of 𝑝𝑐 ,
and finally merges the states afterwards (on the return
instruction).
Serval provides other such symbolic optimizations

to speed up symbolic evaluation for the interpreters it
provides out of the box. Writing such optimizations requires
domain knowledge on the part of the interpreter developer.
Developers can use Rosette’s symbolic profiler to find out
bottlenecks in symbolic evaluation, and come up with their
own optimizations.

By combining the RISC-V (equivalently x86-32) and eBPF
interpreters they built, the authors of Serval were able to
write a verifier for Linux’s in-kernel eBPF JIT compiler(s).
Using Serval’s eBPF interpreter, starting with some machine
state, they symbolically execute a particular eBPF instruc-
tion to produce a resulting state. Next, using Serval’s RISC-V

(x86-32) interpreter, starting with an equivalent machine
state, they symbolically execute the RISC-V (x86-32) instruc-
tion produced by the JIT for that eBPF instruction, to obtain
a resulting state. Finally, the verifier checks if both the re-
sulting states are equivalent. This is repeated for each eBPF
instruction (they only support arithmetic and logic eBPF in-
structions). Using this process, they found 9 bugs in Linux’s
RISC-V JIT implementation and 6 bugs in the x86-32 JIT
implementation.
Discussion. Serval is a demonstration of the strengths

of the Rosette and Racket environment. One can write an
interpreter for a concrete DSL and with the help of Rosette,
lift the interpreter to work on symbolic values. With Rosette,
you get symbolic evaluation, partial evaluation, and also a
symbolic profiler to determine bottlenecks in verification.

The authors build interpreters for LLVM, along with ones
for RISC-V, x86-32, and BPF. In my recent work on verifying
C code from the Linux kernel [25], we convert the C code
to logic by first converting it to LLVM IR using the clang
compiler [11], in a semantics preserving transformation. We
then run custom LLVM passes to convert the kernel IR to
SMT. Writing the LLVM pass that compiles LLVM to SMT
is an involved process, while also being to profile and op-
timize the solvig time when using the generated SMT for
verificaiton. Currently our verification takes upwards of a
day for certain kernel functions we want to verify. It could
be possible to use Serval’s lifted LLVM interpreter on the
LLVM IR generated from the kernel’s C code. This approach
holds the promise of allowing our SMT formulas to be more
compact, allowing verification to scale, while also affording
us the opportunity to make use of Serval’s (and Rosette’s)
optimizations and profiling if the need arises.

2.4 Jitterbug
The specification used by Serval is not complete in that it
cannot be used to prove the correctness of the entire eBPF JIT.
Proving the entire JIT correct for systems like the eBPF JIT
is challenging because they aren’t designed with verification
in mind. For instance, while these JITs can be viewed as one-
pass compilers, they still perform optimizations. Consider
a 32-bit load from memory to a 64-bit register, where the
semantics of eBPF require that the top 32-bits of the 64-bit
register be cleared after the load. If an analysis can deem
that the top 32-bits are already zero the JIT avoids emitting
instructions that clear the top 32-bits. A correcness specifi-
cation needs to reason about optimizations, along with the
semantics of the source and target instructions.
Jitterbug [17] aims to address this by providing a speci-

fication that is both amenable to verification and capable
of finding bugs. Jitterbug models eBPF and target architec-
tures as abstract machines, and formulates JIT correctness as
a bisimulation property between the source and target ma-
chines: a correct JIT produces a target program that preserves
the behaviours of the source program. As abstract machines,
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Figure 3. An instantion of Jitterbug’s verification pipeline for
RISC-V targets.

both the source and the target programs transition through
a sequence of states producing a trace of externally visible
events along the way (such as memory loads and stores, or
function calls to eBPF helpers), and a return value. For a JIT
to be correct, the source and target programs must produce
the same trace and return value (bisimulation). Addition-
ally, the target program must also preserve architectural
safety properties (for example callee-saved registers must
be preserved). Overall JIT correctness is implied if both the
bisimulation and architectural safety properties hold.

Jitterbug devises a stepwise specification that implies the
above notion of correctness (stepwise here means reason-
ing about individual translation steps). To achieve this, Jit-
terbug assumes (as is in the case with existing JITs in the
Linux kernel), that JITs generate target programs in a per-
instruction fashion. Under this assumption, for each eBPF
instruction JITs emit machine instruction(s) consisting of a
prologue of instruction(s), instruction(s) corresponding to
the source eBPF program’s instructions, and an epilogue of
instruction(s). Jitterbug specifies notions of correctness for
each component (prologue correctness, per-instruction cor-
rectness, and epilogue correctness). Together, these capture
the idea that invariants set up by in prologue are preserved
by each instruction, the trace produced by executing the
machine instructions is the same as the one produced by
executing the corresponding eBPF instructions, and that the
epilogue results in a final state that satisfies architectural
safety and produces the same return value as in the final
state of the source eBPF program. Finally, the authors prove
using the Lean theorem prover [6] that taken together, these
correctness properties inductively imply the correctness of
the entire JIT. Using a stepwise specification is also more
amenable to verification as it allows working modularly to
prove individual translations correct.

One of the challenges in verifying the correctness of eBPF
JITs, even when following the stepwise specification men-
tioned above, is the dynamic nature of the code they generate.
The JIT may produce varying blocks of target instructions
for a given eBPF source instruction. As a particular case,
consider a target architecture that has a different number of

registers compared to the eBPF virtual machine. Consider
also that the JIT maintains a pre-determined mapping be-
tween eBPF and target registers: if the target architecture
has sufficient registers, there is a one-to-one mapping, if not,
some registers can be spilled to stack. Importantly, the JIT
will emit different number of target instruction blocks for a
particuler eBPF instruction depending on whether the ma-
chine registers corresponding to the source eBPF registers
have been previously spilled. If a register is spilled, the ma-
chine instruction block would begin with a load operation
from memory. Hence, when symbolically evaluating a JIT
implementation, Jitterbug produces a representation that
contains symbolic instructions: containing symbolic values
in registers and immediates. This means that unlike Serval,
where the only inputs were symbolic, Jitterbug needs to rea-
son about symbolic programs as well. which can lead to path
explosion. The solution adopted by Jitterbug to address path
explosion is similar to the one used by Serval to address a
symbolic program counter: merge the program state at each
control-flow join, and force a split on every possible concrete
opcode when encountering a symbolic instruction [3].

Finally, Jitterbug specifies a DSL (in Rosette) that is a sub-
set of C, to write JITs. Jitterbug authors manually converted
the existing JITs for RV64, Arm32, Arm64, x86-32, and x86-
64 in the Linux kernel to this DSL. Applying the stepwise
specification from above, they attempted to prove their cor-
rectness. They found 16 new bugs in the existing JITs, and
patched them. They also wrote a BPF JIT for RV32 (which did
not exist in the kernel) in the DSL from scratch, and proved
its correctness. They provide an (unverified) C code extrac-
tor that extracts programs in the DSL into C, which they
used on their RV32 JIT implementation. Their C RV32 JIT
implementation has been upstreamed into the Linux kernel.
Discussion. The main contribution of Jitterbug that

stands out is coming up with the precise stepwise specifi-
cation. This allows reasoning about individual translation
steps of a JIT, as opposed to reasoning about the entire
translation at once. This approach should work for systems
that are designed modularly, as is the case with eBPF JITs.
In my recent work [25] we aim to prove the correctness

of abstract interpretation of eBPF bytecode performed by
the eBPF verifier. Abstract interpretation in the eBPF verifier
aims to overapproximate set of possible states of the eBPF
program in order to prove certain safety properties of the
program. Abstract interpretation specifies a semantics on
abstract values, corresponding to the concrete eBPF seman-
tics. Establishing a correctness property for per-instruction
abstract semantics is relatively straightforward, as we do
in Agni [25]. However, it is curious to see if we can prove
the correctness of the entire abstract interpretation simi-
lar to Jitterbug through induction (a step towards this was
our refined soundness specification, which leveraged certain
peculiarities of the implementation of the kernel’s abstract
interpretation). It is an interesting area for exploration.
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3 Synthesis
This section summarizes ideas in program synthesis relevant
to my work. Program synthesis is the process of automati-
cally finding programs that satisfy some user provided spec-
ification. This process is challenging because any synthesis
approach, in essence, has to search over the space of all pos-
sible programs, which is vast and grows exponentially with
the length of the programs considered. Additionally, it is also
difficult to express user intents in the form of a specification.
Program synthesis approaches can be categorized along

three dimensions.

1. The specificaton of user intent. User intent can be
specified as a logical specification, input-output exam-
ples, in natural language, or even as partial programs.

2. The search space. The search space should be ex-
pressive enough to include a large class of programs,
while also being restrictive enough to be able to search
through. Search spaces can be restricted by using only
a subset of the language or using a DSL; restrictions
can be placed on the operators and the control struc-
ture of the program.

3. The search strategy. The strategy used to search the
space can be based on enumeration of programs in the
language, deduction (fixing the structure of an expres-
sion, and searching for sub-expressions), constraint
solving (translating the required behavior of the pro-
gram into logical constraints that can be solved for)
and even statistical techniques.

Consider a user intent provided in the form of a logi-
cal specification that relates inputs of the program to its
expected output. For example, a specification 𝜙𝑠𝑝𝑒𝑐 for a pro-
gram that takes as input a list 𝑙 and outputs the maximum
number 𝑚 could be written as: 𝜙𝑠𝑝𝑒𝑐 ≜ ∀𝑥 ∈ 𝑙 : 𝑚 ≥ 𝑥 .
The synthesis problem can be framed as finding a program
𝑃 , that satisfies a certain specification 𝜙𝑠𝑝𝑒𝑐 for all inputs 𝐼
given to it and the outputs 𝑂 it returns.

∃𝑃 : ∀𝐼 ,𝑂 : 𝑃 (𝐼 ) = 𝑂 =⇒ 𝜙𝑠𝑝𝑒𝑐 (𝐼 ,𝑂) (1)

The above formulation is a statement in second-order
logic, as it quantifies over the space of programs. The general
idea in many program synthesis approaches is to reduce the
second-order search problem to a first-order search problem,
that can be solved with off-the-shelf SMT solvers.

3.1 CEGIS
Counterexample-Guided Inductive Synthesis [22] (CEGIS) is
based on the observation that both (a) finding a program that
satisfies the specification for some inputs, and (b) verifying
whether a program satisfies the specification for all inputs,
are both first order problems. We can characterize these
problems as follows.

1. Finite synthesis. Finding one program 𝑃𝑐 that satis-
fies our specification for some finite number of input-
output pairs ⟨𝐼 0,𝑂0⟩, ⟨𝐼 1,𝑂1⟩, . . ..

∃𝑃𝑐 , 𝐼 0,𝑂0, 𝐼 1,𝑂1, . . . :

𝑃𝑐 (𝐼 0) = 𝑂0 ∧ 𝜙𝑠𝑝𝑒𝑐 (𝐼 0,𝑂0) ∧
𝑃𝑐 (𝐼 1) = 𝑂1 ∧ 𝜙𝑠𝑝𝑒𝑐 (𝐼 1,𝑂1) ∧ . . .

(2)

2. Verification. Verifyingwhether a program 𝑃𝑐 satisfies
a specification for all inputs and outputs.

∀𝐼 ,𝑂 : 𝑃𝑐 (𝐼 ) = 𝑂 =⇒ 𝜙𝑠𝑝𝑒𝑐 (𝐼 ,𝑂) (3)

CEGIS begins with a initial finite set 𝑆 of input-output
pairs that satisfy the specification: 𝑆 ≜ {⟨𝐼 0,𝑂0⟩, ⟨𝐼 1,𝑂1⟩, . . .}.
It then discharges the finite synthesis query from Equation 2
to an SMT solver. The solver generates a candidate program
𝑃𝑐 that is correct for at least all the input-output pairs in 𝑆 .
Next, CEGIS performs a verification of whether 𝑃𝑐 is correct
for all inputs, by discharging Equation 3 to the SMT solver
(asking if its negation is unsatisfiable). If Equation 3 is valid,
CEGIS is done, it found a program what works for all inputs
and satisfies the specification. If not, the solver returns a
counterexample: an input-output pair 𝐼𝑐 ,𝑂𝑐 for which 𝑃𝑐 is
incorrect. In this case, CEGIS adds this example to the set 𝑆 ,
and loops back to perform finite synthesis and verification
again. With each iteration of the loop, verification generates
more and more counterexamples, which force the finite
synthesis to come up with more and more general programs,
until it finds a program that works for all inputs.

3.2 Brahma
Brahma [9] approaches the task of generating a program by
breaking down a program 𝑃 into components and composing
them. Components are essentially functions, and are drawn
from a pre-defined library. Synthesized programs are loop-
free, restricted to only use components from the library, and
use each component exactly once. With the idea that a can-
didate program can be made of components composed in an
arbitrary fashion, Brahma turns the problem of synthesis into
finding a location (𝑖 .𝑒 ., a line number) for each component in
the program. Brahma generates a synthesis constraint that
encodes the problem and then uses the CEGIS paradigm for
solving the constraint. We first look at the structure of the
library of components, followed by how the verification step
of CEGIS works in Brahma, and finally the finite synthesis
step.

Component library. Components are specificed using a
functional description that relate its inputs to its outputs. A
specification 𝜙𝑖 of a component 𝑖 can look like 𝜙𝑖 (𝐼𝑖 ,𝑂𝑖 ) ≜
𝑂0 = 𝐼0 + 1, which says the the output of the component is
one greater than its input. Let 𝑃 ≜ {𝐼0, 𝐼1, 𝐼2 . . .} be the set of
all inputs to all the compnents, and 𝑅 ≜ {𝐼0, 𝐼1, 𝐼2 . . .} be the
set of all the outputs. Brahma defines 𝜙𝑙𝑖𝑏 as the combination
of all the component specifications in the library:
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𝜙𝑙𝑖𝑏 (𝑃, 𝑅) ≜ 𝜙0 (𝐼0,𝑂0) ∪ 𝜙1 (𝐼1,𝑂1) ∪ . . .

Verification. A candidate program from the finite synthe-
sis essentially generates a mapping between the inputs and
outputs of the various components. Such a mapping takes
the form:

𝜙𝑐𝑜𝑛𝑛 (𝐼 ,𝑂, 𝑃, 𝑅) ≜
∧

𝐼𝑖 = 𝑂 𝑗

which says that the input to a component 𝑖 is taken from
the output of the component 𝑗 , and 𝜙𝑐𝑜𝑛𝑛 is a conjunction
of such mappings. Note that the input to a component can
be from the program input 𝐼 , or from temporary results in 𝑅.
The output of the program 𝑂 is the output of the last com-
ponent according to the mapping. The verification step in
Brahma asks, given a candiate program described by location
mappings 𝜙𝑐𝑜𝑛𝑛 of components, does there exist some input
to the program for which the specification is not satisfied?

∃𝐼 ,𝑂, 𝑃, 𝑅 :
𝜙𝑐𝑜𝑛𝑛 (𝐼 ,𝑂, 𝑃, 𝑅) ∧ 𝜙𝑙𝑖𝑏 (𝑃, 𝑅) ∧ ¬𝜙𝑠𝑝𝑒𝑐 (𝐼 ,𝑂)

Finite synthesis. Now, let’s look at how to generate a
candidate program in the first place, using finite synthesis.
Finite synthesis uses location variables to encode location
mappings for components. Every component 𝑖’s input 𝐼𝑖 and
output 𝑂𝑖 parameters is associated with location variables
𝑙𝐼𝑖 and 𝑙𝑂𝑖

respecitvely. Each location variable determines
where its associated parameters get its values from (this
could be the program’s input or from the a specific outputs
of another component). The finite synthesis query searches
for an assignment to these location variables.
Let 𝐿 be the set of all location variables: 𝐿 ≜ {𝑙𝑥 | 𝑥 ∈

𝑃 ∪𝑅}. In a valid program, the location variables must satisfy
some well-formedness conditions: 1. all line numbers should
be within a finite range depending on the type and number
of components used 2. no pair of distinct component result
location variables must be assigned the same line number
3. line numbers assigned to location variables should be such
that components only take inputs that were computed earlier.
These well-formedness conditions are captured in a predicate
𝜓𝑤𝑓 (𝐿).

Now finite synthesis further needs to define the dataflow
between components. When a component’s 𝑖’s output is con-
nected to another component 𝑗 ’s input, the result variable of
component 𝑖 should be constrianed to be equal to the input
variable of component 𝑗 . Brahma defines 𝜓𝑐𝑜𝑛𝑛 to capture
the fact that if a pair of locations variables 𝑙𝑥 and 𝑙𝑦 corre-
sponding to variables 𝑥 and 𝑦 of two compnents refer to the
same location, then 𝑥 and 𝑦 must be the same value.

𝜓𝑐𝑜𝑛𝑛 (𝐿, 𝐼,𝑂, 𝑃, 𝑅) ≜
∧

𝑙𝑥 = 𝑙𝑦 =⇒ 𝑥 = 𝑦

Finally, we can write down our finite synthesis query.

∃𝐿,𝑂0,𝑂1, . . . , 𝑃0, 𝑃1, . . . 𝑅0, 𝑅1, . . . , :
𝜓𝑤𝑓 (𝐿) ∧∧
𝑖

𝜙𝑙𝑖𝑏 (𝑃𝑖 , 𝑅𝑖 ) ∧𝜓𝑐𝑜𝑛𝑛 (𝐿, 𝐼𝑖 ,𝑂𝑖 , 𝑃𝑖 , 𝑅𝑖 ) ∧ 𝜙𝑠𝑝𝑒𝑐 (𝐼𝑖 ,𝑂𝑖 )

The synthesis query asks the solver if there exists some
location mapping 𝐿 for the set of inputs in the running list of
counterexamples, where for each input 𝑖 , the compnents are
connected according to𝜓𝑐𝑜𝑛𝑛 and the specification is satisfied
by the 𝑖𝑡ℎ example. When the solver finds such a location
mapping, we have a candidate program to run through the
verification step to see if the program is correct on all inputs.
If the verification succeeds, we have found our candidate
program.

4 PREVAIL
PREVAIL [8] is a replacement to Linux’s in-kernel eBPF ver-
ifier built using abstract interpretation from the ground up.
PREVAIL aims to improve upon the precision of the in-kernel
Linux eBPF verifier by reducing the number of false posi-
tives, while also improving upon its scalability, by allowing
the verification of eBPF programs with a larger number of
paths (and loops).
Observations. eBPF programs can access a fixed set of

memory regions: context, stack, packet. The stack region is a
fixed-size program stack. The context region is essentially a
C struct (and hence, also fixed in size). It stores invocation
arguments to the eBPF program, including the start and end
pointers to the packet region. The packet region, in turn, is a
variable sized region that stores incoming/outgoing network
packets to/from the eBPF program.

The authors make some important observations about the
nature of eBPF programs that drives their choice of abstract
domains used for the abstract interpretation in their verifer.
First, an eBPF program performs pointer arithmetic and com-
parisons when accessing the variable-sized packet region. To
ensure that such an access is within bounds, a verifier must
track relations between program variables (registers) used for
comparisons. This necessitates the use of a relational abstract
domain. Next, when compilers run out of registers to use,
they spill the registers by storing them to the stack region
(and eventually loading them back). Proving the safety of a
memory access that involves a spilled value would involve
keeping track of values in memory as well. Thus, the authors
note: a verifier must track values in memory, including rela-
tions between different locations. Finally, the authors note that
to scale to being able to verify larger eBPF programs, path
enumeration is not feasible. To address that, a verifier can
employ abstract domains that are equipped with joining and
widening operators: joining allows the merging of abstract
states at control flow merge points, while widening allows
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the convergence of abstract states in programs with loops,
preventing path explosion.
A custom DSL.With the above considerations in mind,

PREVAIL specifies a custom DSL (EBPFPL). eBPF programs
are compiled to this DSL. The interesting aspect of the design
of EBPFPL is its semantics, which is a modified form of a
small step operational semantics. Given an existing state
𝜎 , the semantics of a command 𝑐𝑚𝑑 in EBPFPL is defined
so that the state transitions to 𝜎 ′ only if a safety predicate
Safe(𝑐𝑚𝑑, 𝜎) is additionally satisfied, and transitions to an
error state otherwise. Thus, the semantics enforces runtime
statefy by aborting into an error state when it detects a safety
violation. PREVAIL develops an abstract interpretation that
overapproximates EBPFPL’s semantics. Now all PREVAIL’s
abstract interpretation needs to do to prove safety of an eBPF
program is to prove that the compiled EBPFPL program never
aborts.

Semantics. The formalization of the rest of the semantics
of eBPFPL is driven by the previously mentioned peculiari-
ties of eBPF. PREVAIL models every program variable (which
translates to a register or a memory cell in eBPF bytecode)
with a tag and a value. The tag is chosen from one of {con-
text, packet, stack} if the register (or memory cell) contains
a pointer to one of the corresponding regions, or it is set to
numerical if the register contains a purely scalar value. The
value represents the actual value in case of a register (or mem-
ory cell) that has been tagged numerical, or an offset into
the specific region in case of one tagged context or packet
or stack. As an example, (stack, 10) represents a pointer 10
bytes into the stack while (numerical, 10) represents a scalar
value 10.

The semantics of each EBPFPL command specifies not only
the usual state transition relations, but also the command-
specific Safe(𝑐𝑚𝑑, 𝜎) as predicates mentioned previously. As
an example, consider the assignment command w := E. It is
trivally safe for simple assignments of immediates or another
register. However, in case E is of the form x ± y, the safety
predicate captures the idea that the assignment shouldn’t
lead to undefined pointer arithmetics (𝑒.𝑔. adding/subtract-
ing pointers to two distinct regions). Similarly, load (store)
commands are deemed safe if they only load from (store
to) bytes within the region the pointer is tagged as (stores
need an additional condition for safety to disallow leakage of
pointers to externally-visible memory: if the value to store
is a pointer, the address at which to store can only be of a
stack tag).

Abstract interpretation. PREVAIL develops an abstract
interpretation that conservatively overapproximates the se-
mantics of EBPFPL programs in order to determine their
safety. Using the Crab [10] abstract interpretation frame-
work, the authors were able to parametrize their analysis
to select from one of several abstract domains. The overall
abstract interpretation requires two domains for tracking
the values and tags of registers: a numerical domain for

tracking values and a custom domain for tracking tags. In
practice, PREVAIL’s algorithm encodes abstract tags as con-
stant numbers, and use the same abstrat domain to track
both values and tags. The authors evaluate PREVAIL on the
non-relational interval domain, and on the relational zone,
octagon, and polyhedra domains [13]. Interestingly, in ab-
stracting bitwise commands, the domains used by PREVAIL
are less precise than the ones used in the existing in-kernel
verifier [24].

Results. The non-relational domains unsurprisingly out-
perform the interval domain in terms of precision (fewer
false positives). However, this precision comes at a cost of
increased time and space complexity of abstract operators
for the non-relational domains. Consequently, as the size of
the programs in terms of instructions (and number of vari-
ables to track) increases, the verification time also increases.
The authors observe that the zone domain is the one that
performs the best, both in terms of verification time and
memory consumption.
Discussion. One of the appealing aspects of PREVAIL’s

design is its modularity. It should be possible to use it with
new abstract domains and operators in the future. In its cur-
rent form however, the main appeal for PREVAIL comes from
fact that using more expressive relational domains reduces
the false positve rate for a verifier. Moreover, these domains
are equipped with widen operators, allowing PREVAIL to
prove the safety of eBPF programs with loops.

However, due to the high memory consumption PREVAIL
would likely not be accepted into the kernel as a drop-in re-
placement for the current verifier. The authors propose per-
forming the expensive parts of the verification in PREVAIL in
userspace, with a kernel component merely validating if the
verification was performed correctly. This ‘proof-carrying’
approach has also been proposed by others [16], and is an
interesting dimension to explore in the design space for se-
curing eBPF programs with static analyses.

It is also important to note that the current in-kernel veri-
fier performs additional analyses to mitigate certain other
kinds of vulnerabilities (𝑒.𝑔. speculative execution), and it is
not clear if a purely abstract interpretation based approach
like PREVAIL would work for accomplishing the same [1].

5 Conclusion
My reserach involves elements of all three types of systems
discussed in this report: verification, synthesis, and abstract
interpretation. It has been educative to understand and learn
from the specific trade-offs they’ve made to make their solu-
tions work. I look forward to applying the techniques learnt
in my future work.
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