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Abstract. This paper describes our experience deploying automated
veri�cation techniques for proving the correctness of value tracking com-
ponents of the eBPF veri�er in the Linux Kernel over the last four years.
The eBPF veri�er uses abstract interpretation with multiple abstract
domains for value tracking. The eBPF veri�er uses non-standard ap-
proaches for re�ning the results from multiple abstract domains, which
necessitated us to design new techniques to show their correctness. Dur-
ing this process, we also discovered that some of the abstract operators
are unsound in isolation. The unsoundness of these operators are eventu-
ally corrected by a shared re�nement operator. The presence of interme-
diate �latent� unsound abstract operators makes the task of veri�cation
harder. We describe our patches to the Linux kernel, which have been
upstreamed, that �x these latent errors and make the abstract operators
correct in isolation, which enables faster automated veri�cation.
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1 Introduction

Extending the functionality of the Linux kernel with user-augmented function-
ality is necessary in many contexts including cloud-native environments for ob-
servability, security [15, 37], telemetry, and load balancing [14]. The Extended
Berkeley Packet Filter (eBPF) ecosystem is a collection of tools and techniques
to extend the functionality of the Linux operating system kernel with safety as-
surances. Speci�cally, the eBPF ecosystem consists of a domain-speci�c language
and an in-kernel register virtual machine with a 64-bit instruction set. A salient
feature of this ecosystem is the eBPF veri�er. The eBPF veri�er is a static an-
alyzer that checks whether a program is safe to execute within the Linux kernel
using abstract interpretation. The eBPF veri�er checks that the program termi-
nates after executing a �nite number of instructions, accesses to the memory
locations are safe, and the program only accesses a subset of kernel memory and
functions. Once the program is deemed safe by the veri�er, the eBPF programs
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are Just-in-Time (JIT) compiled to the native machine. Today, there are many
applications and companies that use eBPF to instrument the Linux operating
system running on production systems, implementing novel features for network-
ing, storage, security, and performance monitoring [6, 14�16,20,37,39,55,57].

The eBPF veri�er employs abstract interpretation [33] to reason about pro-
gram safety. Arguably, the eBPF veri�er is the world's most widely used abstract
interpreter, running on billions of devices worldwide. Unlike typical uses of ab-
stract interpretation where the analysis is done in an o�ine setting, the eBPF
veri�er performs abstract interpretation in a live production setting. Hence,
along with correctness of the analysis, its performance is also extremely im-
portant. The abstract interpreter, the accompanying abstract domains, and the
various algorithms are implemented in an e�cient manner in the eBPF veri�er.
Given that the eBPF veri�er is executed in a production kernel, any bug in the
veri�er creates a huge attack surface for exploits [43, 44, 52, 54] and vulnerabili-
ties [2, 5, 7�13,24�27,35,40�42].

The core components of the eBPF veri�er are the mechanisms used to track
the values of program variables which are subsequently used to access memory.
The eBPF veri�er uses �ve abstract domains to track the values of variables
(i.e., value tracking). Four of them are variants of the interval domain. The other
is a bitwise domain named tnum [45, 47, 53, 61]. The eBPF veri�er implements
abstract operators for each of these domains e�ciently. Conventionally, results
from multiple abstract domains are combined using sound composition of sound
abstract operators using modular reduced products [31]. The eBPF veri�er in the
Linux kernel combines the results from the various abstract domains in a non-
modular fashion; it mixes up the implementation of abstract operators in one
domain with reduction operators that combine information across domains [63].
The Linux kernel developers previously did not provide any soundness guarantees
for these operators in the eBPF veri�er.

Our e�orts to push automated formal methods to verify the Linux ker-
nel's eBPF veri�er. Over the last few years, we have been using automated
veri�cation methods to check the correctness of various individual abstract do-
mains and their composition in the eBPF veri�er. Initially, we formalized the
tnum abstract domain [61] which is e�ciently implemented with fast operations
in the Linux eBPF veri�er. We also proposed a new abstract multiplication al-
gorithm that is provably sound and is faster than previous algorithms [61]. The
Linux kernel developers were more interested in the formal proofs of correctness
when compared to performance from our new algorithm. Our algorithm is now
incorporated in the Linux kernel since v5.14 [19].

Subsequently, we focused our e�orts on proving the correctness of abstract
interpretation algorithms for the entire value tracking analysis that includes
the combination of the tnum domain and the interval domains. Our prototype,
Agni [63], automatically checks the soundness of value tracking performed by
the eBPF veri�er. Agni automatically generates logical formulae representing
the semantics of the abstract operator from eBPF veri�er's C code (instead of
manually writing them). We developed the correctness speci�cation for value
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tracking given that eBPF veri�er combines abstract operators for individual
domains with re�nement operations that combine information across domains.
We used the Agni prototype [22,62] to automatically check the soundness of 16
kernel versions starting from v4.14 to v5.19. During this process, we discovered
27 previously unknown bugs, which have been subsequently �xed by unrelated
patches.

Of particular note were six abstract operators (corresponding to the instruc-
tions bpf_and, bpf_and_32, bpf_or, bpf_or_32, bpf_xor, bpf_xor_32) in the latest
version of the eBPF veri�er (i.e., v5.19 when Agni was initially released) that
we found to be unsound. We observed that the eBPF veri�er, in addition to per-
forming non-modular re�nements, uses a shared re�nement operator, at the tail
end of every abstract operator. This shared operator e�ectively preconditions
input abstract values to all abstract operators. As a result, this prevents sound-
ness issues from being manifested by any concrete eBPF program. However, we
were still concerned that this �latent� unsoundness can cause potential issues in
the future with changes to the shared re�nement operator. Finally, the issue of
latent unsoundness could not be overlooked when we could not verify the sound-
ness of the abstract operators in the latest Linux kernels (v6.3 or later). A few
kernel developers have been using the Agni prototype to check the correctness
of the latest commits pertaining to value tracking [1, 17, 18]. Starting around
v6.3, commits that make signi�cant changes to the shared re�nement operator
caused our Agni prototype to take a very long time to complete veri�cation (e.g.,
veri�cation time increased to weeks from a magnitude of hours) and would not
even complete for the latest version of the kernel (v6.8).

Novel contributions in this paper. To address the runtime issue, we want
to split the task of verifying the entire abstract operator into smaller tasks and
then compose them. To compose these smaller veri�cation tasks, it is necessary
to remove the latent unsoundness. Hence, we analyze the counterexamples gen-
erated by Agni and develop patches that remove the latent unsoundness from
the six operators. By �xing the latent unsoundness, we are able to split the veri-
�cation task, e�ectively achieving signi�cant speedup in the veri�cation process.
We are now able to verify all the latest kernels including the latest version v6.8.
The patches that make the six abstract operators sound have been accepted by
the Linux kernel developers in the bpf-next kernel tree and are scheduled to be
upstreamed to mainline.

Overall, this paper makes the following contributions.

1. We design a divide-and-conquer veri�cation approach that allows us to scale
veri�cation to more complex re�nement operators in the latest kernels (�3).
Unlike [63], this approach does not su�er veri�cation timeouts.

2. We investigate and report on the fundamental reasons for the latent un-
soundness in the eBPF veri�er's abstract operators. We propose �xes to
make the abstract operators sound. These �xes have been accepted by ker-
nel developers and have made their way into mainline Linux kernels (�4).

3. To support the signi�cant code changes made to the eBPF veri�er's re�ne-
ment operators since v6.3, we re-engineered Agni in collaboration with the
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kernel developers. This involved supporting new LLVM constructs in trans-
lating the C source code to veri�cation conditions (�5).

4. Overall, this paper o�ers a case study on the e�ort (conceptual and engi-
neering) required to push formal methods research to practical settings (�6).

2 Background

We �rst describe the various abstract domains along with the abstract operators
that the eBPF veri�er uses for value tracking. Next, we describe the soundness
speci�cation that Agni uses to verify the soundness of the abstract operators.
Finally, we describe our experience with verifying changing abstract operators
across several kernel versions.

2.1 Abstract Interpretation in the eBPF Veri�er

The eBPF veri�er uses �ve abstract domains for value tracking: four of them
are interval domains (i.e., unsigned 64-bit (u64), unsigned 32-bit (u32), signed
64-bit (s64), signed 32-bit (s32)), and the �fth is a bitwise domain (called the
tristate number, or tnum domain [51, 61]). Although the eBPF veri�er is exten-
sively tested, there was no formal speci�cation for either the abstract domains
or the operators before our prior work [61,63].

1 def abstract_u64_add (in1, in2):
2 if (in1.u64_min + in2.u64_min < in2.u64_min ||
3 in1.u64_max + in2.u64_max < in2.u64_max):
4 out.u64_min = 0;
5 out.u64_max = UINT64_MAX;
6 else
7 out.u64_min = in1.u64_min + in2.u64_min
8 out.u64_max = in1.u64_max + in2.u64_max
9 return out

Fig. 1: Abstract addition in the u64 domain on
a bpf_add operation. Here, in1 and in2 are the
abstract state maintained for two operands in-
put to bpf_add. UINT64_MAX is the largest rep-
resentable unsigned 64-bit integer.

The interval domains. The u64

abstract domain is an interval do-
main that tracks an upper and
lower bound of a 64-bit register
when interpreted as an unsigned
64-bit value, across executions of
the eBPF program. The u64 ab-
stract domain formally is Au64 ≜
{[x, y] | (x, y ∈ Z+

64) ∧ (x ≤u64 y)},
where Z+

64 is the set of 64-bit non-
negative integers, and ≤u64 repre-
sents a 64-bit unsigned comparison.
The C code of the eBPF veri�er
maintains a tuple of unsigned 64-
bit integers (u64_min, u64_max) for tracking the upper and lower bound of each
register that appears in the eBPF program. The concretization function is
γu64([x, y]) ≜ {z | (z ∈ Z+

64) ∧ (x ≤u64 z ≤u64 y)}. The abstraction function

is αu64(c) ≜ [minu64(c),maxu64(c)], where c is a member of the powerset of Z+
64,

and minu64(·) and maxu64(·) compute the minimum and maximum over a �nite
set c where each element of c is interpreted as a 64-bit unsigned value. The other
three interval domains, the signed 64-bit domain (s64), the unsigned 32-bit do-
main (u32), and the signed 32-bit domain (s32) are similarly implemented using
the corresponding signed or unsigned arithmetic over the respective bitwidth.
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An abstract operator captures the computation of concrete operations over
program variables in the abstract domain. Figure 1 provides the pseudo code
in the eBPF veri�er for abstract u64 addition. It has two input abstract states
in1 and in2 corresponding to the inputs to the bpf_add instruction. It checks if
the addition operation causes integer over�ow, then sets the resulting bounds to
the set of all integers in the u64 domain (i.e., it loses precision). Otherwise, the
bounds are updated as shown in the �gure similar to interval arithmetic [32].

The tristate numbers (tnum) domain . This abstract domain in the eBPF
veri�er is similar to bitwise domains in abstract interpretation literature [45,47,
53]. The goal of this domain is to track whether a bit of a given register is a
known 0, a known 1 or unknown across executions of the program. The eBPF
veri�er implements this domain with a tuple of two unsigned 64-bit integers
(v,m). If a particular bit of m is 1 then the value of that bit of the register is
unknown. If a particular bit of m is 0 then the value of that bit of the register is
equal to v's value for that particular bit.

Combining information from multiple domains. The eBPF veri�er imple-
ments abstract operators for each abstract domain corresponding to each arith-
metic and logic (ALU) instruction and each jump instruction in the eBPF in-
struction set. Consider two abstract domains with sets of abstract values A1,A2.
For a �xed concrete operator f :C→C, suppose the abstractions of f in the two
domains respectively are g1 and g2 (g1:A1 →A1, and g2:A2 →A2) Depending
on f , the precisions of g1 and g2 may vary signi�cantly. Therefore, the bene�t
of using multiple abstract domains is that it allows combining information from
di�erent domains which may improve precision.

Intuitively, the eBPF veri�er aims to make the abstract value in one do-
main more precise using information available in an abstract value in a di�erent
domain. This is typically done by using a separate re�nement operator [34].
The eBPF veri�er combines both the abstract operator and re�nement steps.
Consider the following re�nement that happens in the abstract operator corre-
sponding to bpf_and in the eBPF veri�er. Here, in1 and in2 are input abstract
states that encapsulate all the �ve domains, and out is the output abstract state
that is being calculated. Prior to this snippet, using information purely from the
input tnum domains, out.tnum.v has already been calculated.

out.u64_min = out.tnum.v;
out.u64_max = min(in1.u64_max, in2.u64_max);

In this abstract operator for the u64 domain, the lower bound, u64_min, is
computed using the output tnum information (i.e., out.tnum.v), which is a re�ne-
ment operation. The upper bound, u64_max, is computed using the input u64
information, which is a traditional abstraction operation. Hence, an abstract
operator in the eBPF veri�er performs re�nement along with the abstract oper-
ation. Hence, reasoning about the correctness of these abstract operators using
traditional methods prevalent in the literature such as modular reduced products
is not possible.
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Fig. 2: Our approach to check both general soundness (left) and preconditioned sound-
ness with the shared re�nement operator (sro). Here, f is the concrete eBPF operation
and absg is the the abstract operator from the source code in the Linux eBPF veri�er.
The dotted arrows indicate that a concrete value is a member of the abstract state
(e.g., xi

1 is a member of the abstract state ai
1).

2.2 Soundness Speci�cation for eBPF Veri�er's Abstract Operators.

We provide a quick overview of our method to check soundness of an abstract
operator. A detailed treatment can be found in our CAV paper [63]. Given
a concrete eBPF operation f :C × C→C over the concrete domain C and an
abstract operator g:A × A→A over abstract states A, the operator g is sound
if ∀a1, a2 ∈ A : f(γ(a1), γ(a2)) ⊑C γ(g(a1, a2)).

We represent the fact that a concrete value x ∈ C is contained in the con-
cretization of the abstract a ∈ A with the formula memA(x, a). For example for
the s64 domain, mems64(x, a) ≜ (a.min ≤s64 x) ∧ (x ≤s64 a.max). The input-
output relationship of the abstract operator obtained from the veri�er's source
code is represented as ao = absg(a

i
1, a

i
2), where ai1 and ai2 are input abstract

values and ao is the output abstract value. The abstract operator absg corre-
sponding to the concrete operation f is sound when the formula in Equation 1
is valid.

∀xi
1, xi

2 ∈ C, ai1, a
i
2 ∈ A : memA(x

i
1, a

i
1) ∧memA(x

i
2, a

i
2) ∧

xo = f(xi
1, x

i
2) ∧ ao = absg(a

i
1, a

i
2) ⇒ memA(x

o, ao) (1)

We adapt the above soundness condition to account for �ve abstract do-
mains used by the eBPF veri�er. We demonstrate it with two abstract domains
A1 and A2 where abstract values ai11 and ai21 are in domain A1, and abstract
values ai12 and ai22 are in domain A2. The concrete input x

i
1 must be contained

in the concretization of the abstract values in domain A1. Hence, we assert
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memA1
(xi

1, a
i
11) ∧ memA2

(xi
1, a

i
12). We apply the same reasoning for xi

2. The
input-output relationship of the abstract operator from the eBPF veri�er source
code for two domains can be represented as {ao1, ao2} = absg(a

i
11, a

i
12, a

i
21, a

i
22).

The abstract operator is sound if the concrete output is a subset of the concretiza-
tions of the abstract outputs in each domain, i.e.,memA1

(xo, ao1)∧memA2
(xo, ao2).

The formula to check soundness with two abstract domains is shown below in
Equation 2.

∀xi
1, xi

2 ∈ C, ai11, ai21 ∈ A1, ai12, ai22 ∈ A2 :

memA1(x
i
1, a

i
11) ∧memA2(x

i
1, a

i
12) ∧memA1

(xi
2, a

i
21) ∧memA2

(xi
2, a

i
22)∧

xo = f(xi
1, x

i
2) ∧ {ao1, ao2} = absg(a

i
11, a

i
12, a

i
21, a

i
22)

⇒ (memA1(x
o, ao1) ∧memA2(x

o, ao2)) (2)

2.3 eBPF Veri�er's Input Preconditioning.

On checking various versions of the Linux eBPF veri�er with the above speci-
�cation, our Agni prototype discovered that some of the abstract operators are
indeed unsound. To get the attention of kernel developers, we had to determine if
this unsoundness can actually manifest with any concrete eBPF program. During
this exploration, we discovered that every abstract operator in the eBPF veri-
�er performs a shared su�x of re�nement operations at the end (see Figure 2).
The purpose of this shared re�nement operator is to combine information from
all abstract domains. The encoding absg obtained from the source code already
includes this shared re�nement operator.

We discovered that the soundness speci�cation above allowed any valid input
abstract state for the abstract operator. In contrast, the input abstract state
for any abstract operator is either the initial state (i.e., any concrete value or
a singleton known concrete value) or the output abstract state produced by
another abstract operator, which is preconditioned by the shared re�nement
operator! Hence, we re�ned our soundness speci�cation to precondition the input
abstract states based on this shared re�nement operator (see [63]).

2.4 Experience Checking Various Kernel Versions.

Using the preconditioned soundness speci�cation, we were able to check the
soundness of 23 versions of the eBPF veri�er starting from v4.14 to v6.3. In
this process, we rediscovered numerous bugs, which were known to the devel-
opers with documented CVEs. Some of them were already �xed by the kernel
developers accidentally in unrelated patches. Table 2 reports the time taken for
verifying all abstract operators on average for various kernel versions.

Until kernel v5.19, we could check the soundness of these operators in a few
hours. The veri�cation time starting from v5.19 increased to 36 hours. Starting
from v6.4, our queries to the SMT solver would timeout after running for a few
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cation conditions which we can verify,
both are extracted from kernel source
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weeks. We observed that there were multiple updates to the shared re�ned op-
erator, which increased its complexity, and is the likely cause of timeouts. While
many of our veri�cation queries resulted in timeouts (i.e. abstract operators for
bpf_sub and bpf_and), we did �nd that six abstract operators�bpf_and, bpf_or,
bpf_xor, bpf_and_32, bpf_or_32, and bpf_xor_32�were unsound using our general
soundness speci�cation.

At this point we faced two signi�cant problems; (1) our veri�cation methodol-
ogy was too slow to see wider adoption, and (2) some of these abstract operators
were unsound when using our general soundness speci�cation. To tackle the �rst
problem, we wanted to explore a divide and conquer strategy that would allow
us to split the abstract operator into smaller parts which we could verify.

3 A Divide and Conquer Approach for Veri�cation

Intuitively, an abstract operator in the veri�er can be considered as a composi-
tion of two sub-operators, ⟨absg⟩ = ⟨opg⟩·⟨sro⟩, where ⟨opg⟩ is executed followed
by ⟨sro⟩. Here ⟨opg⟩ represents the unique part of the abstract operator that up-
dates abstract domains according to the speci�c operator (i.e. addition, multipli-
cation, bitwise-and, bitwise-right-shift, etc.) and ⟨sro⟩ represents the re�nement
operator that is shared across all abstract operators (i.e. the shared re�nement
operator). Starting from v6.4, our veri�cation paradigm [63]�generating a sin-
gle large veri�cation condition for ⟨opg⟩ · ⟨sro⟩�was no longer viable since it
would take weeks for the veri�cation process to �nish. Hence we needed a new
approach for faster veri�cation.

The compositional nature of abstract operators in the veri�er presented an
opportunity for quicker veri�cation. Our key insight here, depicted in Figure 3,
is that we could decouple ⟨opg⟩ and ⟨sro⟩ and generate veri�cation conditions
for them, then prove their correctness separately.
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Soundness speci�cation for ⟨opg⟩. Our primary strategy for proving the
correctness of the latest abstract operators in the eBPF veri�er is to split the
task into smaller subtasks and individually verify their correctness. The sound-
ness speci�cation for opg is similar to the one in Equation 2, except that absg
is replaced by opg such that {ao1, ao2} = opg(a

i
11, a

i
12, a

i
21, a

i
22). The formula in

Equation 3 below illustrates this minor change for two abstract domains:

∀xi
1, xi

2 ∈ C, ai11, ai21 ∈ A1, ai12, ai22 ∈ A2 :

memA1
(xi

1, a
i
11) ∧memA2

(xi
1, a

i
12) ∧memA1

(xi
2, a

i
21) ∧memA2

(xi
2, a

i
22)∧

xo = f(xi
1, x

i
2) ∧ {ao1, ao2} = opg(a

i
11, a

i
12, a

i
21, a

i
22)

⇒ (memA1
(xo, ao1) ∧memA2

(xo, ao2)) (3)

Soundness speci�cation for ⟨sro⟩. We need to de�ne what it means for the
shared re�nement operator (i.e. sro) to be sound. We use sro(a) to denote the
abstract value that is the output of the shared re�nement operator which we
extract from veri�er source code. Note that sro(a) takes a single abstract input
and produces a single abstract output. Additionally, in contrast to an abstract
operator that has a corresponding concrete eBPF operator, the shared re�nement
operator is not related to any concrete eBPF operation. Hence, we use an identity
function as the concrete operator in our soundness speci�cation for sro. Given
concerete input xi that is contained in the concretization of abstract inputs ai1
and ai2, we say that shared re�nement operator is sound if the concrete output
xo is contained within the concretization of resulting abstract outputs ao1 and
ao2. The formula to check the soundness of the shared re�nement operator that
re�nes the output abstract state based on two abstract domains is shown below
in Equation 4.

∀xi ∈ C, ai1 ∈ A1, ai2 ∈ A2 : memA1
(xi, ai1) ∧memA2

(xi, ai2)∧
xo = xi ∧ {ao1, ao2} = sro(ai1, a

i
2) ⇒ (memA1

(xo, ao1) ∧memA2
(xo, ao2)) (4)

Overall, our divide and conquer veri�cation approach produces smaller SMT
formulae for every abstract operator absg, and the single re�nement operator sro.
Consequently, these formulae can be veri�ed in a matter of minutes. However,
it requires each unique abstract operator opg to be sound so that we can reason
about the soundness of its composition with the re�nement operator. Hence, we
started exploring why some operators were unsound and developed �xes that
correct these cases of unsoundness.

4 Making the eBPF Veri�er's Abstract Operators Sound

Now, our goal is to �x the unsound abstract operators, which will allow us
to individually check the soundness of the abstract operators separately from
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1 case bpf_and:
2 out.tnum = tnum_and(in1, in2);
3 out.s32, out.u32 = interval_and_32(in1, in2);
4 out.s64, out.u64 = interval_and_64(in1, in2);

(a)

1 def interval_and_64(in1, in2):
2 # ...
3 out.u64_min = in1.tnum.v;
4 out.u64_max = min(in1.u64_max,
5 in2.u64_max);
6 if (in1.s64_min < 0 ||
7 in2.s64_min < 0):
8 out.s64_min = INT64_MIN;
9 out.s64_max = INT64_MAX;

10 else:
11 out.s64_min = out.u64_min;
12 out.s64_max = out.u64_max;
13 # ...

(b)

Fig. 4: (a) An illustration of the sequence of calls that update the various abstract
domains. (b) The speci�c sequence of updates to the u64 and s64 domain that leads
to unsoundness in the abstract operator. Speci�cally, the signed domain is updated
by using the unsigned domain. However, the check on line 6 does not guarantee that
implicit casts from a 64-bit unsigned value to a 64-bit signed value (lines 11 and 12)
do not result in integer over�ows.

the shared re�nement operator. We use the Agni prototype [62] to just check
the abstract operator without the shared re�nement operator with the general
soundness speci�cation shown in Figure 2. Speci�cally, the prototype reports
that the bitwise operators, bpf_and, bpf_or, bpf_xor and their 32-bit coun-
terparts bpf_and_32, bpf_or_32, and bpf_xor_32 as unsound with the general
soundness speci�cation. Agni's models from SMT veri�cation show that the out-
put abstract values for the s64 and s32 domains can be illformed (i.e. s64_min >

s64_max and s32_min > s32_max).

Figure 4a speci�es the structure of the bitwise and abstract operation in
the eBPF veri�er; the abstract operator updates all �ve abstract domains by
�rst updating its tnum domain using the respective tnum operation, then its 32-
bit interval domains and �nally, its 64-bit interval domains. This structure is
important because the interval domains use the updated tnum domain to infer
new bounds, which is the precursor for unsoundness in the operator.

Figure 4b shows how the interval domains are updated in the eBPF veri�er
for the bpf_and operator; �rst the lower bound of the unsigned 64-bit domain
is inferred from the value in the tnum domain (line 3). Then, the upper bound
of the output in the u64 domain (line 4) is inferred using the upper bounds of
the operands in the u64 domain. Finally, the abstract state for the s64 domain is
inferred based on the updated state from the u64 domain (lines 8-9 and 11-12).
When the lower bounds of the operands in the s64 domain are negative (line 6),
then the veri�er sets the bounds to the entire range of the s64 domain, which
loses all precision (lines 8 and 9). This condition ensures that signed bounds are
inferred from the unsigned bounds only if both registers take on positive values
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(lines 11 and 12). However, this check is not correct and does not account for
potential signed integer over�ows that may happen in lines 11 and 12.

The model from our Agni prototype indicates that the resulting abstract state
has unsound signed bounds (i.e., s64_min > s64_max). To reach such a state, the
input s64 abstract states should be positive which ensures that the else branch
is taken for the condition in line 6. Given that the u64 bounds are sound, u64_min
has to be greater than u64_max. The range of values represented by an unsigned
64-bit value is larger than a signed 64-bit value. Hence, the unsoundness occurs
when the most-signi�cant bit (MSB) of u64_max is 1 (i.e., u64_max is greater than
or equal to 263) and the MSB of u64_min is 0 (i.e., u64_min is less than or equal
to 263 − 1). This snippet of code (line 6) is the root cause of the error.

There are three main cases that one needs to consider so that integer over�ows
do not occur when an unsigned 64-bit value is assigned to a signed 64-bit value.
In the �rst case, u64_min ≤ u64_max ≤ 263−1. Both signed and unsigned values are
identical and positive and within their respective dynamic ranges. The current
check on line 6 in Figure 4b correctly handles this case. In the second case,
263 − 1 < u64_min ≤ u64_max. Although the value in the unsigned representation
exceeds the dynamic range of the signed 64-bit integer, both the lower bound and
the upper bound in the resulting signed 64-bit representation will be negative
values. The invariant s64_min < s64_max is still maintained. In the third case,
u64_min ≤ 263 − 1 < u64_max. When these unsigned 64-bit bounds are assigned
to signed 64-bit bounds, the s64_min bound will be positive (as u64_min is within
the signed 64-bit value's dynamic range) and the s64_max will be negative. This
case is not handled by the check in line 6 of Figure 4b.

Our patch to �x the unsoundness in the abstract operators. Our patch
makes the abstract operator sound by correctly handling the above three cases.
Speci�cally, our insight is to assign the unsigned 64-bit bounds to signed 64-bit
bounds only when the invariant s64_min <= s64_max can be ensured. We replace
lines 6-12 with the following snippet in Listing 1.1.

1 if ((s64) out.u64_min <= (s64) out.u64_max):
2 out.s64_min = out.u64_min;
3 out.s64_max = out.u64_max;
4 else:
5 out.s64_min = INT64_MIN;
6 out.s64_max = INT64_MAX;

Listing 1.1: Our patch to �x the unsoundness in six of the eBPF veri�er's abstract
operators

When we checked the �xed abstract operator with the Agni prototype, it
reported that the patched operator is sound. Our corresponding patch that �xes
the unsoundness of the eBPF's six abstract operators has been upstreamed to
the kernel [3] 1.

1 https://go.rutgers.edu/90ueywub



12 M. Shachnai et al.

5 C to Logic�Supporting New LLVM Constructs

To generate veri�cation conditions for the eBPF veri�er's abstract operators,
the �rst step in Agni involves extracting the semantics of an abstract operator.
For each abstract operator, Agni automatically (a) converts the eBPF veri�er's
C code into LLVM IR, (b) obtains a slice of the eBPF veri�er concerned with
the particular abstract operator, and (c) converts the LLVM IR into logic in
the SMT-LIB format using our LLVMToSMT compiler pass. Due to signi�cant
changes to the veri�er's C code, the LLVMToSMT pass had to be re-engineered.
This section discusses the details of these changes. We �rst begin with a refresher
of the LLVMToSMT pass, and then proceed to discuss the LLVM new constructs
that needed to be supported.

5.1 The LLVMToSMT Pass

liveOnEntry:
a: [a0, a1, a2, a3, a4]
b: [b0, b1, b2, b3, a4]

Fig. 5: Array of bitvectors for
inputs a and b modeling the
view of memory on function
entry (bitvectors in blue).

The LLVMToSMT pass encodes the semantics of
an abstract operator in the theory of bitvectors.
The eBPF veri�er's �ve abstract domains are en-
capsulated in a struct called reg_st. In general,
each abstract operator takes as input two reg_st

pointers (let's say a and b), and updates the mem-
ory pointed to by them. We model each reg_st as
a tree (more simply, an array) of bitvectors. We
create an array of bitvectors on function entry,
corresponding to the input reg_st pointers a and
b. This represents the view of memory on function entry (Figure 5).

E�ectively, each LLVM instruction of the abstract operator utilizes the bitvec-
tors from this array and generates formulas that uses them. On every LLVM
instruction that creates a temporary register in IR, we create a fresh bitvector
variable corresponding to that temporary register. For example, a load instruc-
tion %ld1 = load i64, i64* %gep1 might be encoded using the fresh bitvector
ld1 as (= ld1 b2), because a preceding getelementptr instruction calculated the
address of %gep1 as the 3rd member of the input reg_st b (hence, b2). Most other
instructions only operated on single value types e.g. i32, i64. Encoding them
into formulas involves asserting that a fresh bitvector equals a combination of
existing bitvectors based on the instruction's semantics. For example, a select

instruction on single value types that looks like %x1 = select i1 %cond, i1 %x2, i1

x3%, is encoded as ite (= cond #b1) (= x1 x2) (= x1 x3)2. The store instructions
create new views of memory, by modifying existing views of memory. LLVM-
ToSMT leverages LLVM's MemorySSA [21] pass to �gure out which memory
view a store modi�es. Finally, the memory view that is active when encounter-
ing the ret instruction contains the output bitvectors for the kernel's abstract
operators.

2 In SMT-LIB #b1 is a bitvector of length 1 that is equal to the value 1
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42 ...
43 %sel = select i1 %is_jmp32, %reg_st* %a, %reg_st* %b
44 %gep1 = getelementptr %reg_st, %reg_st* %sel, i64 0, i32 2
45 %ld1 = load i64, i32* %gep1
46 ...
47 %gep2 = getelementptr %reg_st, %reg_st* %sel, i64 0, i32 4
48 store i64 0, i64* %gep2

Listing 1.2: Code patterns in LLVM IR emitted by clang when compiling the newer
versions of the eBPF veri�er. The IR involves a select instruction on pointer types.

5.2 Supporting new LLVM constructs

Starting from kernel v6.8-rc1 major changes were introduced to the register
state bounds update logic [48], which resulted in LLVM IR code patterns that
LLVMToSMT was not able to handle. We will consider the example of IR code
patterns that involved select instructions on pointer types for the purposes of
illustration. These instruction patterns were emitted by clang when compiling
the eBPF veri�er function is_branch_taken [4]. This function takes as input two
reg_st pointers corresponding to the registers involved in a jump instruction and
aims to determine statically if either the goto or the fall-through branch will
always be taken at runtime. Importantly, this function involves conditionally
swapping the two input reg_st pointers. When compiled to LLVM IR, clang
emits the IR pattern in Listing 1.2 containing a select instruction that chooses
between two reg_st pointers a and b.

Supporting loads from select on pointer types. Let's say the array of bitvec-
tors for each input to the function a and b look like the one in Figure 5 on function
entry. The select instruction (line 43) determines which of the two input reg_sts
is indexed by the subsequent getelementptr (line 44), depending on the result of a
condition (here, is_jmp32). That is, the bitvector corresponding to the load, ld1,
should be either equal to reg_st a's 3rd bitvector a2, or reg_st b's 3rd bitvector
b2. Thus, such a load instruction must be encoded with the following formula:
(ite (= is_jmp32 #b1) (= ld1 a2) (= ld1 b2)).

Supporting stores from select on pointer types. A store instruction like the
one on line 47 modi�es the memory view. So, we �rst make a copy of the bitvec-
tors in liveOnEntry to associate with new memory view that the store creates.

MemoryDef(1):
a: [a0, a1, a2, a3, tempa]
b: [b0, b1, b2, b3, tempb]

Let's say this memory view is called
MemoryDef(1). The store will update this mem-
ory view. The store instruction stores a value
at a memory location calculated by the pre-
ceding getelementptr instruction at line 44,
which in turn could be either at reg_st a or reg_st b, depending on the pre-
ceding select instruction. To handle this, we create new bitvectors tempa and
tempb and store them at location 4 in our new bitvector arrays corresponding to
MemoryDef(1).
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Now, additionally, we need a formula that asserts that the bitvectors tempa
and tempb at the speci�c locations for either bitvector arrays are set according to
the result of the boolean comparison that the select was based on (i.e.is_jmp32).
That is, if the is_jmp32 is true, a[4] will be updated, else it will remain unchanged.
If is_jmp32 is false, b[4] will be updated, else it will remain unchanged. The
formula we obtain is:
(ite (= is_jmp32 #b1) (= tempa a2) (= tempa #x0000000000000000))

(ite (= is_jmp32 #b0) (= tempb b2) (= tempb #x0000000000000000)) 3

Re-engineering LLVMToSMT. In addition to the above, the changes to
the eBPF veri�er in v6.8-rc1, required the handling of phi instructions in IR
that choose between pointer types, (similar to select instructions on pointer
types). Encoding such IR instructions requires tracking the dependencies be-
tween the select, phi, getelementptr, and store (and load) instructions, as illus-
trated above. This required signi�cantly re-engineering LLVMToSMT in order
to support newer versions of the abstract operators in the eBPF veri�er.

6 Experience Verifying the Sound Patched Operators

We have signi�cantly enhanced the Agni prototype [62] incorporating the feed-
back from the Linux kernel developers. A few kernel developers are actively
using our prototype. We are actively working to integrate it as part of the CI
process. To facilitate the possible integration into the CI process, we had to
change our veri�cation condition generator for the abstract operators directly
from the eBPF veri�er's C source code to account for new features used by the
veri�er. Further, we split the veri�cation into smaller subtasks using a divide
and conquer approach which we call the new strategy henceforth. With our new
strategy we are able to verify that the latest abstract operators for value tracking
in kernel v6.8 are sound.

eBPF Before After
Instruction Patch? Patch?

bpf_and ✗ ✓

bpf_and_32 ✗ ✓

bpf_or ✗ ✓

bpf_or_32 ✗ ✓

bpf_xor ✗ ✓

bpf_xor_32 ✗ ✓

Table 1: Veri�cation results for latent
unsound abstract operators in kernel
v6.8 with and without our patch ap-
plied. After applying our patch these
abstract operators become sound.

Our patches make the abstract op-
erators sound . We applied our �xes to
both the latest kernel version (v6.8) and
also to some of the older versions. Sub-
sequently, we tested these versions of the
eBPF veri�er using the general soundness
speci�cation in Agni. Prior to our patch,
bitwise operators (bpf_and/bpf_or/bpf_xor
and their 32-bit counterparts) were un-
sound. Table 1 shows that our patch was
able to �x the latent unsoundness in these
abstract operators. Apart from these op-
erators, other abstract operators were al-
ready sound even without the shared re-

3 In SMT-LIB #x0000000000000000 is a bitvector of length 64 equal to the value 0
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�nement operator. Speci�cally our patches eliminate the need for doing sro-
preconditioned veri�cation, which signi�cantly improves veri�cation time.

Improvements in veri�cation time with our new strategy.Our divide and
conquer approach for verifying abstract operators in the eBPF veri�er not only
allowed us to prove that recent versions are indeed sound with respect to value
tracking but it also signi�cantly minimized veri�cation runtime. Previously, when
we tried to verify these kernel versions we would encounter timeouts. Table 2
reports the time taken to verify all the abstract operators in the eBPF veri�er for
value tracking. We conducted these experiments on the Cloudlab [36] framework,
using two 10-core machines with Intel Skylake CPUs running at 2.2 GHz and
192GB of RAM.

Kernel Old New
Version Strategy Strategy

4.14 ∼2.5 hrs <5 min

5.5 ∼2.5 hrs <5 min

5.9 ∼4 hrs <5 min

5.13 ∼10 hrs <5 min

5.19 ∼36 hrs <15 min

6.3 ∼36 hrs <15 min

6.4 Timeout <15 min

6.5 Timeout <15 min

6.6 Timeout <15 min

6.7 Timeout <15 min

6.8 Timeout <30 min

Table 2: Comparison of veri�cation
runtime performance between our old
and new veri�cation strategies. Times
indicated are for verifying all instruc-
tions in a single kernel version.

Our old strategy that performed sro-
preconditioned veri�cation in the pres-
ence of latent unsound abstract opera-
tors was not able verify any kernel version
starting from v6.4. Further, it took signif-
icant time on kernel versions before v6.3.
Our new strategy is able to complete veri-
�cation of all abstract operators in a given
version in less than 15 minutes. This re-
sult is very useful in making a case for in-
tegration into the CI process of the eBPF
veri�er. Our new strategy, which requires
no latent unsoundness in the abstract op-
erators, is more robust to changes in the
veri�er's code. Kernel v6.8 introduced sig-
ni�cant changes to the veri�er's reduction
operator and made it signi�cantly larger.
The Agni prototype using the old strat-
egy was seeing timeouts. In contrast, the Agni prototype with the new strategy
is able to verify all the operators of the latest eBPF veri�er in less than 30 min-
utes, which also highlights the scalability and robustness of the new strategy in
handling extensive changes to the eBPF veri�er.

Kernel developers are interested in using formal methods. Over the
last four years working on this project, we are grateful to continuous encourage-
ment and feedback from various Linux eBPF veri�er developers. Without their
feedback, we would not have been able to upstream our patches that proposed
new algorithms for tnum multiplication [19] and made the abstract operators
sound [3]. A few of them have also been using the Agni prototype [1, 17, 18].
Our experience suggests that real world adoption of formal method tools re-
quires signi�cant additional e�ort beyond the prototypes typically good enough
for a research publication. In summary, we encourage the community to develop
usable formal tools and collaborate with the eBPF veri�er developers to push
them into production for real-world impact.



16 M. Shachnai et al.

7 Related Work

Our work uses and builds upon various seminal prior work on abstract interpre-
tation [30, 31, 33]. Our soundness formalization is in�uenced by prior work on
value tracking abstract domains [45,46,56]. When we tried to formalize the Linux
eBPF veri�er's method for combining abstract domains, we explored ideas by
Cousot on enhancing the precision of abstract domains with reduced products
and disjunctive completion domain re�nements [29, 34], which has been later
improved by others [60]. A systematic survey on product abstract operators is
also available [28]. Our focus in this project has been to build on prior work so
that we can easily apply them for automatic reasoning of the eBPF veri�er in
the Linux eBPF veri�er.

This paper extends our previous work on Agni [63], which developed meth-
ods for automatically verifying the value tracking analysis in the eBPF veri�er,
introducing sro preconditioned veri�cation. While our prior work checked the
soundness of the eBPF veri�er in Linux versions v4.14 to v5.19, it encountered
veri�cation timeouts in newer versions and did not address the causes of latent
unsound abstract operators or propose �xes. In contrast, this paper introduces
a faster, divide-and-conquer veri�cation approach that eliminates the need for
input preconditioning, investigates the causes of the latent unsoundness in the
abstract operators, and proposes �xes. Additionally, we extend our C-to-logic
framework to support new LLVM constructs, enabling the veri�cation of ab-
stract operators in the latest Linux kernel version, v6.8.

This paper, along with our initial Agni prototype [63], is closely related to the
work by Bhat et al. [23], which also veri�es value tracking in the eBPF veri�er.
However, Bhat et al. formalize a limited set of abstract operators and do not
address the shared re�nement operator or its underpinnings to soundness. Both
their work and our previous work report latent unsound operators in the eBPF
veri�er. This paper, however, focuses on �xing latent unsound abstract operators
to enable fast veri�cation, with the aim of integrating formal methods into the
continuous integration work�ow of the Linux eBPF veri�er.

In contrast to the Linux eBPF veri�er's approach of eBPF veri�cation in a
live production kernel, the eBPF ecosystem in the Windows operating system
performs o�ine veri�cation using extensions of the PREVAIL veri�er [38] in
a secure user-mode environment. PREVAIL [38] uses relational zone abstract
domains and can potentially verify richer eBPF primitives such as loops in com-
parison to the Linux eBPF veri�er's veri�er. It is unclear which of the two
approaches, the o�ine approach of the Windows eBPF framework or the in-
production veri�cation in the Linux eBPF veri�er, will become the dominant
approach in the future.

Beyond formal veri�cation, there are fuzzers employed to �nd bugs in the
eBPF veri�er. Recent work [58] generates structured eBPF programs that pass
the veri�er and then checks sanitized programs for bug indicators during runtime
to discover potential veri�er bugs. Beyond the veri�er, there is signi�cant work
on formalizing and �nding bugs in the JIT engine of the eBPF ecosystem [49,
50,59,64,65], which is complementary to our work.
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8 Conclusion

The Linux eBPF veri�er uses abstract interpretation to verify the safety of input
eBPF programs. Over the last four years, we have formalized various abstract
domains, operators, and their soundness. We have automatically veri�ed the
soundness of the abstract operators by generating veri�cation conditions directly
from C code of the Linux eBPF veri�er. We have upstreamed a new abstract op-
erator for the tristate domain (tnums) and �xes to the latent unsoundness in six
abstract operators in interval domains. Making our tool usable by Linux eBPF
veri�er developers through active collaboration has allowed them to explore the
feasibility of integrating our tools as part of the eBPF veri�er's continuous inte-
gration work�ow. We hope that our experience encourages the formal methods
community to collaborate with Linux eBPF veri�er developers for real-world
impact.
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